COMPUTATIONALLY EFFICIENT ADAPTIVE LOOP FILTERING DESIGN WITH
DIRECTIONAL FEATURES FOR VIDEO CODING

PolLin Lai and Felix C. A. Fernandes

Dallas Technology Lab., Samsung Telecommunications America
1301 E. Lookout Dr., Richardson, TX USA 75082

ABSTRACT

To improve coding efficiency and visual quality in video
coding, adaptive loop filtering (ALF) methods using
directional features to classify pixels for filter adaptation
have been proposed in the literature. However, the
associated complexity has been identified as an obstacle for
realistic hardware implementation and deployment. This
paper presents an ALF design, which efficiently classifies
video blocks by computing the direction and strength of
local gradients only at subset of pixels. As compared to the
state-of-the-art ALF approach utilizing directional features
for classification, our design achieves appealing complexity-
efficiency trade-off, with more than 85% reductions in
computation, 75% reduction in terms of the number of pixels
to be accessed, and reduces the worst-case number of filters
from 15 to 8; while being able to preserve more than 85% of
ALF gains in different coding structures.

Index Terms— Adaptive filter, directional filter, de-
noising filter, image/video classification, directional features

1. INTRODUCTION

Adaptive loop filtering (ALF) for video coding is a
technique to reduce coding artifacts introduced by hybrid
video coding schemes (namely, block-based motion
compensation followed by transforms and quantization). To
achieve this goal, Minimum Mean-Squared Error (MMSE)
Wiener filters are designed on a frame by frame basis.
Filtered frames will have improved quality, and will serve as
better references for temporal predictive coding. Filter
coefficients are encoded and transmitted as side information.
Thus, the rate-distortion tradeoff in ALF design is between
the amount of side information and the improvement in
picture fidelity. The key to an effective ALF scheme is
identifying the underlying artifacts and designing a set of
filters suitable for compensating the corresponding artifacts.
Depending on the targeted artifacts, different filter
design approaches have been proposed. For specific video
content exhibiting focus changes, Lai et al. [1] designed
multiple filters by classifying macroblocks (MB) based on
the type of estimated local MB-wise focus changes. For each
class of blocks, a MMSE filter is designed to compensate for
the associated type of focus change. For more generic
denoising purposes, Karczewicz et al. [2] extended single

978-1-4673-0046-9/12/$26.00 ©2012 IEEE

1225

filter with quadtree-based filtering on/off control by Chujoh
et al. [3], to multiple filter ALF scheme, in which individual
pixels in a frame are classified into 16 classes according to
the magnitudes of sums of local Laplacian. A MMSE filter is
designed for each class of pixels. While improved coding
efficiency has been reported [4], the main drawback of this
approach is that since only the magnitude of local Laplacian
is considered, the resulting linear Wiener filters tend to be
low-pass and isotropic in general, and hence are not suitable
for reducing artifacts around sharp edges.

To introduce directional filtering capability, Lai et al.
[5] and Ikai et al. [6] classified pixels in a frame into classes
with different directional orientations, by computing and
comparing the relative strength among multiple directional
features. Higher coding efficiency and improved subjective
quality are achieved, as compared to classification only
using sums of local Laplacian [3]. Note that in order to
correctly apply filters to the corresponding pixels without
sending the localized filter indices, the decoder needs to
perform the same classification process as done at the
encoder side. Thus for practical implementations, it is highly
preferred that the feature computation and classification to
be simple. It has been proposed to perform classification on
block-basis [6][7][8]: Blocks (rather than individual pixels)
in a video frame are classified based on multiple block-wise
directional features. This reduces the complexity at decoder,
since it only has to apply one filter to all pixels within a
given block as compared to pixel-based classification where
potentially the decoder might need to apply different filters
to consecutive pixels. Among them, the method by Chong et
al. [8] considers both directional features and sums of local
Laplacian magnitudes, to classify blocks for filter design,
leading to the highest coding efficiency. It was adopted into
High Efficiency Video Coding (HEVC) [9], the ongoing
standardization for a new video coding standard, held by the
Joint Collaborative Team on Video Coding (JCT-VC).

However, due to the calculations of sums of Laplacian
magnitudes, the complexity to compute features remains too
high for realistic hardware implementations [10]. To address
this issue, Lai et al. [7][11] proposed to compute directional
features only at subset of pixels and also avoid computing
the sums of Laplacian. As compared to the method by
Chong et al. [8], the later work [11] reduces the operations
to compute features by more than 80%, while maintaining
90% of the achievable gains. It has been adopted into HEVC
especially due to the endorsement from companies

ICASSP 2012

producing video codec hardware. In this paper, we will
further reduce the computation and also reduce the access
area required to compute directional features.

Besides the complexity associated with feature
computation, Chong et al. [8] classifies blocks into 15
classes based on directional and sums of Laplacian features.
Using 15 filters increases side information (filter
coefficients) and might consequently reduce the efficiency
of ALF. One possible approach to reduce the number of
filters [12] is to conduct rate-distortion tests to merge
different class-labels and redesign filters. Such a process
will increase encoding complexity. Thus, there is also a need
for simpler ALF processing with fewer filters and less need
for the associated filter-redesign process.

In this paper, we present a computationally efficient
ALF classification scheme using the direction and strength
of local gradients, which reduces computation complexity,
access area, and the number of filters, while preserving most
of the coding gains. The remainder of the paper is organized
as follows: Section 2 describes the state-of-the-art ALF
classification which utilizes both directional and Laplacian
features [8]. The proposed computationally efficient
classification for ALF is presented in Section 3. We conduct
complexity analysis for both methods. Simulation results are
provided in Section 4, with conclusions in Section 5.

2. FILTER ADAPTATION USING DIRECTIONAL AND
LAPLACIAN FEATURES

In the state-of-the-art ALF approach [8], to classify a 4x4
block with pixels {X(ij) | i=0,1,2,3; j=0,1,2,3}, directional
features H, ¥ and sums of Laplacian feature Lg are computed
at every pixel X(i,j) as follows:

H(ij) = | X(i))<<1 - X(ij-1) - X(ij+1) | (1)
V(i) = X(@)<<1 - X(i-1,/) - X(i+1,) | (2)
L(iy) = H(ij) + V(i) 3)
Ls(i.)) = Y101 21,01 L(itm,j+n) 4)

As shown above, for each pixel, H and V' measure the
horizontal and vertical variations respectively (directional
features); while Lg measures the sum of Laplacian within a
3x3 window. Then, the block-wise features are computed as:

Hp = Y0123 2j-0.123 H(i,j) %)
V= 21:0,1,2,3 Zj:0,1,2,3 V(i,j) (6)
L= Y0123 20123 Ls (i,j) >> @)

Finally, the class label Cp of the 4x4 block B is
determined by comparing the relative strength between
directional features Hy and Vy (dir), and the normalized
Laplacian magnitude average Ly (norMag),as below:

1,if Vg > 2xHp

o dir=2,if Hy>2xVy ®)
0, otherwise

o norMag=max{ 15, (Lpx114)>>11} ©)

Cp = classTab [dir][norMag] as Table 1 below.

From (8), the block-based classification produces 3
directional classes for filter adaptation: dir = 1 and dir = 2

1226

Table 1: classTab to classify blocks into 15 classes

norMag
0 | 1 2 3 4 5 6 | 7
dir 0 0 1 2 2 2 3 3 3
dir 1 5 6 7 7 7 8 8 8
dir2 10 11 12 12 12 13 13 13
norMag
8 9 [10 | 11 | 12 | 13 | 14 | 15
3 3 4 4 4 4 4 4
8 8 9 9 9 9 9 9
13 13 14 14 14 14 14 14

correspond to blocks with strongly predominant vertical and
horizontal variations, respectively; while for blocks with dir
= 0, variation in either direction is not much stronger than
the variation in the other direction. Then within each
directional class, there are 5 variance (magnitude) levels,
determined based on the normalized Laplacian magnitude
norMag. Note that norMag saturates at 15 when Ly exceeds
certain value. For each row in Table 1, as norMag increases,
the class labels cover larger Ly ranges. This was designed to
take into account the fact that, in typical video content, there
are more blocks with smaller Laplacian values Lp (blocks
with small pixel value variation) and much fewer blocks
with very large Ly (large pixel value variation) [6].

After classification, for all blocks in each class, an
MMSE filter will be designed.

2.1. Complexity Analysis for the Classification in [8]

i Al A e 1,2,3,3,2,1
oo 979 9je- 2,4,6,6,4,2
frrrdr eso
#19-9-9- 910 £9.9.6,
Sl e B e 2,4,6,6,4,2
>19-9-9- 910 14,0043
=rrrre 2352

Fig. 1 Feature computation in [8] for a 4x4 block, and the
weighting matrix applied to the per pixel Laplacian L

In this subsection, we provide analysis for the
complexity of the classification method by Chong et al. [8].
Fig. 1 illustrates the computation for classifying a 4x4 block,
shown within the solid-lined rectangle. At each pixel,
obtaining Lg in (4) requires 9 Laplacians L. The example for
computing Lg(0,0) is shown in Fig. 1, where 9 Laplacians are
computed at pixels within the dashed 3x3 rectangle.
Therefore, obtaining Lz requires 36 Laplacians L as depicted
in Fig. 1, and accessing 8x8 pixels (Laplacians need one
additional line of pixels on top / bottom / left / right). From
(4) and (7), the weights applied to these 36 Laplacians L are
listed as the weighting matrix in Fig. 1. In an optimized
implementation, this 2D weighted summation is decomposed
into separable 1D summations in vertical and horizontal
directions, each with weights {1,2,3,3,2,1}:

First for each row, compute the sum (L(i,-1)+L(;,4)) +
(L(7,0)+L(153))<<1 + (L(3,1)+L(32))x3. The multiplication
by 3 can be implemented using a shift operation and an
addition, leading to a total of 6 additions to compute the sum
for each row (and there are 6 rows). Then sum over these 6

values again with weights {1,2,3,3,2,1}, which requires
another 6 additions. Thus, from L(i,j), we can obtain Lp with
a total of 42 additions.

Thus, the total number of operations to compute the
class label Cy for a 4x4 block is:

H and Vin (1)(2): 16x4 additions, 16x2 abs values

L in (3): 16 additions

Hpg and Vpin (5)(6): Another 15 additions each

Ljp via Lg as discussed above: 42 additions

—> 152 additions, and 32 absolute values (Note that shifting
operations are not counted, as it is common practice to not
include them especially when assessing hardware
complexity.)

3. COMPUTATIONALLY EFFICIENT FILTER
ADAPTATION SCHEME

To achieve a filter adaptation scheme with reduced

complexity and number of filters, while preserving the

directional filtering capability, we propose the following
changes to the classification process:

a) Feature computation only at subset of pixels: Since the
features are for classifying blocks, it is not necessary to
compute features at every pixel. As an example, we use
only pixels uniformly subsampled by 2.

b) Avoid computing the sums Laplacians Ls: For each
pixel being used to compute features, instead of
computing 9 Laplacians within a 3x3 window, the
variance is simply measured as the sum of H and V.
Thus, the corresponding normalization factor to obtain
norMag from Laplacian magnitude average Lp, has to
be changed from 114 in (9) to 1024. (The original value
114 in the method [8] was computed from the
normalization 1024 /9 = 114.)

c¢) Simple gradients as directional features: We modified
the features H and V from [-1,2,-1] in (1)(2) to gradients
[1,-1]. Although operator [-1,2,-1] can detect directional
edges, it may not be able to detect gradual value
changes along certain direction. From signal processing
perspective, the features [1,-1] capture directional
gradients, which can be more effective in capturing
directional textures (directional gradual change, and
direction edges). Complexity-wise, this eliminates half
of the subtractions at each pixel used for computing
features. Combining with a) and b), this also leads to a
reduced access area of exactly the 4x4 pixels within B
as depicted in Fig. 2.

d) Two directional classes, with four variance levels: The
classification in Section 2 creates three directional
classes according to the relative strength of ratio 2
between Hp and V. However, since there is another
dimension norMag for classification which already
measures the strength of wvariance within each
directional classes, we propose a coarser classification
using directional and variance features: Two directional
classes are determined by directly comparing directional
gradients Hp and Vj: dir = 1 corresponds to blocks with
larger vertical gradient than horizontal gradient (Hp >

1227

V), while dir = 0 correspond to the other type of blocks
(Hp < V3). Then for each directional class, we construct
4 magnitude levels by stretching out the label ranges
row-wise in Table I to better classify norMag. Thus, the
total number of filters is reduced from 15 to 8, before
applying any optional class-label-merging process such
as [12]. This significantly reduces the worst-case
number of filters.

Our ALF classification with directional features can be
summarized as below:

For a 4x4 block, compute directional features only at
pixels subsampled by 2: {X(i;j) | i=0,2; j=0,2}, using simple
directional gradients:

H(ij) = | X)) - X(i,j+1) | (10)

Vi) = |X(ij) - X(i+1,)) | (1)
Then the block-wise features are computed as:

Hp =302 Zj=0,2 H(i,j) (12)

V= Y02 2y-02 V(ij) (13)

Ly=(Hp+ Vp)>>1 (14)

The class label Cy of block B is determined as the Table 2
classTab2 below, Cy = classTab2 [dir][norMag]:

o dirZI,ifHB> VB
0, otherwise (15)

e norMag=max{ 15, (Lpx1024)>>11} (16)

Table 2. classTab2 to classify blocks into 8 classes

norMag
0 1 2 3 4 S 6 z
dir 0 0 0 1 1 1 1 1 2
dir 1 4 4 5 5 5 5 5 6
norMag
8 9 [10 | 11 | 12 | 13 | 14 | 15
2 2 2 2 2 2 2 3
6 6 6 6 6 6 6 7

3.1. Complexity of the Proposed Classification

lo-e @0l

|v v
s a a -

| o
vy v 7
|®@ ® @ O

Fig.2 Proposed feature computation for a 4x4 block

Thanks to the feature computation only at subset of
pixels, the elimination of sum of Laplacians within 3%3
windows, and the use of gradient features, the complexity of
the proposed classification is significantly reduced. For a
4x4 block, the operations are as the following:

e Hand Vin (10)(11) at 4 pixel: 4x2 adds, 4x2 abs values
e Hpand Vzin (12)(13): Another 3 additions each

e [Lpin (14): Simply 1 additions

- 15 additions, 8 absolute values. This presents a drastic
reduction as compared to the operations in Section 2.

4. SIMULATION RESULTS

We implemented our classification for filter adaptation in
HEVC reference software HM4.0. Simulations were
conducted with QP 22, 27, 32, and 37 to obtain different
rate-points. Four different coding structures were tested: All
Intra, Random Access (hierarchical B pictures), Low Delay
B (IPPP pictures with 2 references lists) and Low Delay P
(IPPP pictures with 1 reference list). We measured the
coding efficiency gains provided by ALF using the
classification method by Chong et al. [8] and using our
scheme; in terms of BD-rate savings (negative numbers
represent coding efficiency gains) [13]. The complete
comparison is summarized in Table 3.

It can be seen that, with significant complexity reductions
in terms of computation, access area, and number of filters,
our proposed classification scheme is able to preserve 85%
of the ALF gains achieved by Chong et al. [8] for Intra
coding (1.7% versus 2.0%), and preserve more than 90% of
its gains for Random Access, Low Delay B and Low Delay
P coding structures.

Table 3. Complexity and performance comparison

ALF using ALF using
classification proposed
method in [8] classification

Classification Additions 152 15
Complexity Abs. Values 32 8
for 4x4 block | Access area 8x8 4x4
Number of filters 15 8
4K -3.2% -2.9%
1080P -1.9% -1.7%
Gains for WVGA -1.6% -1.2%
All Intra WQVGA -0.7% -0.6%
720P -2.8% -2.3%
Average -2.0% -1.7%
4K -5.4% -5.1%
. 1080P -3.9% -3.5%
Gains for WVGA -2.6% 2.3%
Access WQVGA -2.5% -2.4%
720P N/A N/A
Average -3.6% -3.3%
4K N/A N/A
1080P -3.4% -3.0%
Gains for WVGA -3.1% -2.7%
Low Delay B WQVGA -1.8% -1.7%
720P -4.3% -4.0%
Average -3.1% -2.8%
4K N/A N/A
1080P -7.3% -6.7%
Gains for WVGA -3.5% -3.0%
Low Delay P WQVGA -1.3% -1.1%
720P -9.2% -8.7%
Average -5.2% 4.7%

5. CONCLUSIONS

In this paper, we present efficient classification method for
ALF filter adaptation, which measures the direction and

strength of local gradients only at subset of pixels.
Compared to the state-of-the-art ALF approach utilizing
directional features, the proposed scheme reduces
computation by more than 85%, reduces the number of
pixels required to be accessed by 75% (from 8x8 to 4x4),
and reduces the worst-case number of filters from 15 to 8,
while being able to preserve more than 85% of the ALF
gains in coding structures such as intra coding, hierarchical
B, and low delay with IPPP. The complexity-efficiency
trade-off is attractive to hardware implementations. As a
result, part of the scheme presented in this paper has already
been adopted into HEVC, the standardization for a new
video coding standard.

6. REFERENCES

[1] P. Lai, Y. Su, P. Yin, C. Gomila, and A. Ortega, “Adaptive
Filtering for Video coding with Focus Change”, in Proc. IEEE
ICASSP 2007, Honolulu, HI, USA, pp. 1.661-664, Apr. 2007

[2] W.-J. Chien and M. Karczewicz, “Adaptive Filter based on
Combination of Sum-Modified Laplacian Filter Indexing and
Quartree Pratitioning”, ITU-T Q.6/SG16 VCEG-AL27, London,
UK, Jul. 2009

[3] T. Chujoh, N. Wada, T. Watanabe, G. Yasuda, and T.
Yamakage, “Specification and experimental results of quadtree-
based adaptive loop filter”, ITU-SG16 Q6 VCEG-AK22, Apr.
2009

[4] T. Yamakage, T. Chujoh, and T. Watanabe, “Comparison of
Loop / Post Filtering for In-loop and Post Processing
filtering AHG”, JCTVC-CO085, Guangzhou, China, Oct. 2010

[5] P. Lai and F. C. A. Fernandes, “Loop Filter with Directional
Similarity Mapping (DSM)”, JCTVC-D221, Daegu, Korea, Jan.
2011

[6] T. Ikai and Y. Yasugi, “Region-based Adaptive Loop Filter
using Two-dimensional Feature”, JCTVC-D116, Daegu, Korea,
Jan. 2011

[7] P. Lai and F. C. A. Fernandes, “Loop Filtering with Directional
Features”, JCTVC-E288, Geneva, Switzerland, Mar. 2011

[8] L. S. Chong, M. Karczewicz, C.-Y. Chen, C.-M. Fu, C.-Y. Tsai,
Y.-W. Huang, S. Lei, T. Yamakage, T. Chujoh, and T. Watanabe,
“CE8 Subtest 2: Block based Adaptive Loop Filter (ALF)”,
JCTVC-E323, Geneva, Switzerland, Mar. 2011

[9] “WD4: Working Draft 4 of High-Efficiency Video Coding”,
JCTVC-F803, Torino, Italy, Jul. 2011

[10] T. Hellman, “ALF Complexity Analysis”, JCTVC-F342,
Torino, Italy, Jul. 2011

[11] P. Lai, F. C. A. Fernandes, and I.-K. Kim, “CE8 Subtest 1:
Block-based Filter Adaptation with Features on Subset of Pixels”,
JCTVC-F301, Torino, Italy, Jul. 2011

[12] T. Ikai, Y. Yasugi, T. Yamazaki, M. Karczewicz, and I. S.
Chong, “CES8.1:Block based Adaptive Loop Filter with flexible
syntax and additional BA mode”, JCTVC-F384, Torino, Italy, Jul.
2011

[13] G. Bjontegaard, “Calculation of Average PSNR Differences
between RD curves,” ITU-T SG16/Q6, VCEG-M33, Apr. 2001

1228

