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ABSTRACT 
 
In this paper a new multi-frame/bidirectional motion estimation 
algorithm based on the concept of recursive-search in spatial and 
temporal space is proposed that effectively minimizes the number 
of candidate motion vectors in the prediction set. The algorithm is 
extremely computationally light compared to full search and 
outperforms existing fast approaches. The algorithm can operate 
effectively on reference frames that may be chosen to be 
consecutive or temporally separated. The average Peak Signal-to-
Noise Ratio (PSNR) performance and compression efficiency is 
virtually not compromised and very close to full search. Results 
based on a number of video sequences and on different GOP 
(Group of Pictures) structures are presented to clearly demonstrate 
the benefits of the proposed motion estimation technique. 
 

Index Terms— Motion Estimation (ME), Multi-frame Motion 
Estimation, Bi-direction Prediction, DIRAC Wavelet Based Video 
Codec, 3D Recursive Search 
 

1. INTRODUCTION  
 
Video encoders play an important role in Multimedia Systems and 
heavily draw upon the hardware resources required for multimedia 
computing. Modern encoders like H.264/AVC (a DCT based 
codec) or DIRAC (a wavelet based codec) make use of variable 
block sizes and multiple reference frames for motion estimation 
(MRFME) in order to deliver higher coding efficiency. This makes 
motion estimation a very computationally intensive task. Several 
fast motion estimation techniques have been proposed for this 
purpose. 
    In [6] a fast bidirectional approach has been presented in the 
context of H.264 encoder supporting four prediction modes based 
on fast evaluation of Lagrangian cost function but based on full 
search. In [1], Tun et. al proposes a multi-frame/bidirectional semi-
hierarchical Fast ME algorithm in the context of DIRAC video 
encoder which is a motion compensated Wavelet video encoder. 
This approach is an improvement over the original fully 
hierarchical motion estimation technique of DIRAC described in 
[1]. The semi hierarchical motion estimation approach of Tun et. al 
[1] uses fully hierarchical motion estimation only for a certain type 
of inter frame. The experimental results show that the proposed 
algorithm reduces the number of SAD calculation to two to three 
times as compared to the original motion estimation algorithm of 
DIRAC while providing almost the same PSNR performance.  
    Use of spatial and temporal prediction can effectively avoid the 
use of large search windows to develop low complexity approaches 

based on single resolution. UMHexagonS is one such high 
performance fast motion estimation (FME) approach introduced in 
the context of H.264 codec. The UMHexagonS initially evaluates a 
set of motion vector predictors and then searches using a variety of 
hexagonal search patterns. 
    The true MRFME algorithms should be able to exploit the 
temporal correlation between multiple reference frames for higher 
performance. One such advanced algorithm designed with this 
perspective has been presented in [3]. The proposed algorithm uses 
3-D search pattern encompassing consecutive neighboring 
reference frames. This search is centered on the best MV predictor 
obtained from an earlier step where a set of candidate spatial, 
temporal and upper layer blocks MV (motion vector) predictors are 
evaluated to find the best MV predictor. In case of low motion, this 
3D search is curtailed to small diamond search. In case of high-
motion the regular 3D-search is followed by a Multi-Hexagon-Grid 
search which is again followed by a second pass of 3D search.  
    This paper presents a prediction based MRFME approach that 
exploits spatial and temporal correlations based on recursive search 
principle and demonstrate how it yields a high performance yet a 
lower complexity algorithm compared to state-of-art approaches. 
In comparison with [3] both high and low motion are dealt with the 
same set of predictors and do not require reference frames to be 
consecutive. It can cope with GOP structures in which encoding 
order is different from the actual video frame order for example as 
in temporally scalable video.  
    The rest of the paper is organized as follows: Section 2 presents 
the recursive method for generation of prediction. Section 3 
presents the complete variable block size (VBS) Multi-
frame/bidirectional approach. In Section 4 results and experiments 
are presented and the performance is discussed in comparison with 
other schemes. Section 5 concludes the paper. 
 

2. PROPOSED SCHEME FOR PREDICTION 
GENERATION 

 
The effectiveness of recursive search approaches in motion 
estimation has been shown in case of single frame forward motion 
estimation predictive schemes [4], [5] for both DCT and Wavelet 
based codec. However, these algorithms are meant for single 
reference frame motion estimation and also depend on single 
continuous chain of forward motion estimated frames which is not 
possible in multi-frame/bidirectional motion estimation. 

The proposed scheme is based on the idea of 1-D recursive 
search [4] method which is explained with reference to Fig 1. It 
involves recursively optimizing a previously found motion vector 
of a spatial neighbour termed as ‘spatial predictor’. It assumes that 
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the discontinuities in the velocity plane are spaced at a distance 
that enables convergence of a recursive block matcher in between 
two discontinuities. When this assumption is satisfied, the 
recursive block matcher yields the correct value at the first side of 
the object boundary and starts converging at the opposite (second) 
side. Treating this as the convergence direction, either side of the 
contour can be estimated correctly depending on the convergence 
direction chosen. If two estimators are applied with opposite or at 
least different convergence directions (bi-direction convergence) 
the fast step response (in convergence to actual motion vector) as 
required on the boundary of the moving objects can be achieved. 
This is because one of the estimators would have converged 
already at a position where the other has yet to do so. A number of 
times it may not be possible to define an estimator in the opposite 
direction because of non availability of results for the blocks after 
the current block in the scanning order which are yet to be coded. 
Convergence in such cases can be improved if a previously 
calculated result (for example from the previous MV field) at an 
opposite position is used as an additional predictor termed as 
‘convergence accelerator’ in the same estimator. This ‘look-ahead’ 
feature can improve convergence behaviour based on the underline 
assumption that the displacement between the previously evaluated 
velocity plane (e.g. for a previous frame) and the current frame due 
to movements in picture is small compared to block size.  

Our approach defines a 3-D recursive search in the spatio-
temporal space. This involves two spatial estimators and one 
temporal estimator/predictor for defining the candidate predictor 
set for motion estimation on a given reference frame. This is 
illustrated in Fig. 2 in which ‘X’ is the current block for which 
motion estimation is being performed.  The two spatial accelerators 
a and b based on spatial predictions Sa and Sb (Fig. 3) respectively, 
taken from block locations 7 and 9 respectively are defined. These 
are defined in two perpendicular directions that are diagonally 
oriented so that the updated motion vectors of these neighbours are 
available. The ideal positions of blocks to provide the 
‘convergence accelerators’ for these estimators are 18 or 24 for 
estimator a and 16 or 20 for estimator b. Because of the fact that 
these are temporal predictors derived on previous field results 
(which may even be temporally separated), their affectivity may 
get reduced.  In case of accelerator b a better compromise is 
offered by selecting an offset position 12 that has been updated for 
the current motion vector field. Though it is not diagonally 
opposite but does have a component in the direction opposite to Sb.   

This motion estimation process can be supported in case of first 
reference frame by a third temporal estimator c  as shown in Fig. 
2(b), whose temporal predictor  Tc can be taken from one of the 
closest previously evaluated motion vector field. The functioning 
of this estimator is the same as a spatial estimator expect that its 
convergence direction is along the temporal axis and the object 
boundaries are replaced by the temporal transition of the block 
from one object to another. Note that a block located at a certain 
position in a frame may belong to one object or the other with 
passing time owing to movement of the objects. We assume that 
such transition takes place at such intervals so as to allow a 
recursive search process to complete its convergence to new 
motion after object transition.  Defining such an estimator is useful 
especially where a static background exists in a scene in multiple 
frames. This temporal estimator may be substantiated by a 
‘convergence accelerator’ drawn from a future frame. However, 
this is not possible most of the times as the motion estimation of a 
future frame may not have taken place by this time. In motion 
estimation on subsequent reference frames it is more attractive to 

use the latest motion vector result of the current block w.r.t 1st 
reference frame. This then constitute a temporal predictor Tc for 
use as one of the candidate.   
   Thus with reference to Fig. 3 candidate set, CS, used for motion 
estimation is given by: 

 
CS = { Sa, Ca, Sb, Cb, Tc }  
   
Where Ca and Cb are ‘convergence accelerators’ of estimators a 

and b respectively. Note that while Ca is a temporal predictor, Cb is 
chosen to be a spatial predictor.  
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Fig. 1. Bidirectional convergence principle [4] 
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Fig. 2(a). Spatial orientation of the estimator a and b w.r.t. the 
current block. Arrows indicate the convergence direction. 
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Fig. 2(b). Temporal orientation of the estimator c.  Arrows indicate 
the convergence direction. 
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Fig. 3. The relative position of prediction candidates (spatial and 
temporal) in the current/previous frame based on estimators a, b 
and c 
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The method for generating the required temporal predictors from 
the available motion vector results (of the current frame or one of 
the previous frames) is illustrated with an example GOP structure 
of Fig. 4. Here the distance between anchor frames is 3. With the 
exception of the first P-frame in the GOP, the motion 
compensation for both types of frames involves two reference 
frames. P-frame, however, involves forward motion estimation 
only while B-frame involves one previous and one future reference 
frame. Note that in the illustrated GOP structure, a variety of 
locations of reference frames that are not consecutively placed are 
involved. In case of consecutive reference frames, without loss of 
generality, the same process has to be repeated on all frames. Table 
1 show against each reference frame the calculated temporal  

Table 1. Temporal predictors (Ca, Tc) for IBBP... Case 

prediction value. In the notation , MvB  represents the 
motion vector of a block ‘B’ as numbered  in Fig. (3) of frame Fi 
that has been motion estimated w.r.t. to the reference frame Fj. In 
case of I reference frame, the temporal predictors are simply taken 
as zero motion vector to initialize the recursive search. For all 
other cases appropriate scaling is done of the motion vector taken 
from the corresponding location but from a motion vector field 
already evaluated. For forward reference frame, the scaling factor 
is positive and for backward reference frame, the scaling factor is 
negative. For example in case of B1’ the temporal distance of B1 to 
its 2nd reference is 2 and the temporal distance of P1 to its 1st 
reference is 3. Therefore, P1 motion vector is multiplied by -2/3 as 
a temporal candidate vectors. Similarly, for B2 the motion vectors 
taken from P1 are multiplied by -1/3.   

Order of Frames for Motion Estimation : 0 3 1 2 6 4 5

I0 P2B4B3P1B2B1

0 654321

 

Fig. 4. Proposed Motion Estimation Scheme  

3. THE MULTIPLE REFERENCE FRAME MOTION 
ESTIMATION ALGORITHM   

The proposed prediction method has been employed for 
implementing a Variable Block Size (VBS), Multiple Reference 

Frame motion estimation algorithm in the DIRAC wavelet based 
motion compensated codec, which is based on the same paradigm 
as the standard DCT based codec by replacing DCT with DWT. 
Thus, the role of the motion estimator essentially is the same in 
both codecs.  Different GOP structures and GOP lengths are 
selectable according to required time constraints. The motion 
estimation accuracy goes to ¼-pixel. The mode selection/block 
size selection employed in DIRAC [1] uses at Splitting level 0 
(8x8) ‘blocks’, Splitting level 1 (16x16) ‘sub-superblocks’ and at 
Splitting level 2 (32x32) ‘superblocks’ with corresponding motion 
vectors. There are four prediction modes available at each of these 
levels: Intra coded, only predicted from the first reference, only 
predicted from the second reference and predicted from both first 
and second reference frame by taking the average of two blocks.  

The motion estimation comprises three stages: In the first 
stage, motion vectors are calculated for every ‘block’ of each 
frame to one pixel accuracy. In the second stage, these vectors are 
refined to sub-pixel accuracy. In the third stage, mode decision is 
performed: This begins at the lowest ‘block’ level where the full-
pixel best motion vector is determined in two steps: A coarse 
search and a fine search/refinement process. The coarse search 
stage involves 3D recursive search as discussed in the previous 
section 3. The motion vector is refined in the second step by 
conducting a one pixel local diamond search. An early stopping 
criterion has been incorporated to skip the refinement process 
when the corresponding SAD (Sum of Absolute Difference) is 
already less than a threshold value.  

The sub-pixel refinement and mode decision process use an 
approach similar to what is employed by the original DIRAC 1.0.2 
ME algorithm [1]. This is not a necessary choice but has been done 
for the sake of fair experimental comparison of our approach with 
that of previously proposed schemes in DIRAC coder. The sub-
pixel refinement process uses the full pixel motion vector as the 
initial guide for finding ½-pixel accuracy motion vectors which in 
turn are used as a initial guide for ¼-pixel accuracy. At each stage 
small diamond search is used to find the best sub-pixel motion 
vector. In the mode decision, these ‘block’ level motion vectors are 
used as candidate motion vectors to evaluate best motion vector at 
‘sub-superblocks’ which in turn are used at the ‘superblock’ level. 
For finalizing the prediction mode, the costs for intra prediction 
and other prediction modes at each level is made available out of 
which the one yielding the best SAD is selected.  

Furthermore, note that early termination has been used in our 
algorithm (and the others tested) to reduce computations. This 
means that the SAD calculation is terminated prematurely as soon 
as the intermediate SAD value exceeds the current minimum SAD. 
 

4. EXPERIMENTS AND RESULTS 
DIRAC (version 1.0.2) has been employed for our current 
experiments and testing as it also opens avenues for our future 
research on new scalable video approaches.  For exact and fairer 
assessment of the capability of our motion estimator, we have 
implemented full search and a few other motion estimator in same 
codec. The results of our approach are shown in the Tables 2 and 3 
for different videos and compared with original DIRAC 1.0.2 ME, 
Fast ME and full search approaches. Different GOP sizes and 
structures but using 2 reference fames as in Fig. 4 are used. The 
result shows that the proposed approach has reduced the ME time 
and total encoding time by 40% -50% and 30% -40% respectively 
compared to DIRAC 1.0.2 ME and 93% - 94% and 85% - 86% 
respectively compared to full search while maintaining the PSNR-
Y close to Full search. The window size in case of full search is ±8 

Coded 
Frames 

Reference 
Frame for ME 

Temporal Predictor values  

I0 NA NA 

P1 
1st Ref   I0 Ca= 0;  Tc= 0 
2nd Ref NA NA 

B1
1st Ref I0 Ca= 0;  Tc= 0 
2nd Ref P1 Ca= ;  Tc=  

B2
1st Ref B1 Ca= ;  Tc=  
2nd Ref P1 Ca= ;  Tc=  

P2 
1st Ref   P1 Ca= ;  Tc=  
2nd Ref I0 Ca= ;  Tc=  

B3

1st Ref P1 Ca= ;  Tc=  
2nd Ref P2 Ca= ;  Tc=  

B4 1st Ref B3 Ca= ;  Tc=  
2nd Ref P2 Ca= ;  Tc=  
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pixel when the reference frame is located at one temporal distance. 
Fig. 5 shows the bitrate vs PSNR graphs for Foreman and 
Container Sequence of CIF format at 30 frames per second. The 
graphs clearly demonstrate that the PSNR values of proposed 
3DRS at different bitrates are nearly equal to as compared to other 
approaches. 

Though implemented in different codecs, relative performance 
of our algorithm with UMHexagonS[7] and Predictive 3D Search 
Algorithm[3] can be made in relation to Full Search approach. All 
the three approaches show a PSNR performance close to full 
search. For [3] taking the case of five reference frames and full 
pixel accuracy (and fixed block size), the number of search 
locations is 75 at best (i.e. 15 search locations per frame). Total 
search number rise to 106 if all types of searches in the search 
scheme are utilized at least once and yield 274 searches in case of 
high motion under the same assumption. In our case a maximum of 
9 search points per frame are evaluated (if all predictors are 
different). This difference shall increase further if mode decision 
and mode level prediction candidates are also included in the 
above picture. In [7] for full pixel and fixed block size search in 
window of size ±16 pixels, the reported speedup of UMHexgonS 
algorithm over full search for different video sequences are 26 to 
47 times. In our case under the same conditions this speed up 
factor comes out to be 121.   

 

 
Fig. 5. Bitrate vs PSNR for Foreman Sequence (CIF format) at 30 
frames per second 

5. CONCLUSION 
In this paper, a multi-frame/bidirectional algorithm based on the 
concept of 3D Spatio-Tempoal Recursive Search has been 
proposed. This approach is able to maintain a PSNR performance 
very close to full search yet yields a very low complexity motion 
estimator compared to existing approaches like [3]. Both high and 
low motion can be dealt with the same set of predictors and there is 
no requirement of reference frame being consecutive. The result 
clearly demonstrates the efficiency of our proposed scheme in a 
motion compensated codec framework. Our proposed algorithm is 
generic to support all GOP structures.  
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Table 2. The Comparison of Motion Estimation (ME) for CIF with GOP Size = 12, B Frames = 6 (Distance Bet. Anchor Frames = 2); ¼ 
pixel, Variable Block Size Case 
SEQUENCE ALGORITHM FILE SIZE 

(KB) 
PSNR-Y 

(DB) 
AVG(SAD)/ 

BLOCK 
%ME TIME W.R.T 

DIRAC1.0.2 ME 
%TOTAL TIME  

W.R.T DIRAC1.0.2 ME 
FOREMAN DIRAC 1.0.2 ME 

PROPOSED 3DRS 
1475 
1436 

37.7730 
37.6557 

70 
24 

--------- 
51.83% 

--------- 
63.65% 

CONTAINER DIRAC 1.0.2 ME 
PROPOSED 3DRS 

1015 
962 

37.7635 
37.8283 

44 
13 

--------- 
48.79% 

--------- 
60.78% 

HIGHWAY DIRAC 1.0.2 ME 
PROPOSED 3DRS 

1119 
1043 

39.5129 
39.3916 

61 
24 

--------- 
60.69% 

--------- 
70.50% 

Table 3. The Comparison of Motion Estimation (ME) for QCIF with GOP Size = 18, B Frames = 12 (Distance Bet. Anchor Frame = 3) 
(With Full-Pixel and Variable Block Size Case) 
SEQUENCE ALGORITHM FILE SIZE 

(KB) 
PSNR-Y 

(DB) 
AVG(SAD)/ 

BLOCK 
%ME TIME W.R.T 

DIRAC1.0.2 ME 
%TOTAL TIME  

W.R.T DIRAC1.0.2 ME 
FOREMAN DIRAC 1.0.2 ME 

FAST ME 
PROPOSED 3DRS 
FULL SEARCH 

411 
440 
410 
415 

35.8203 
35.3764 
35.8062 
35.9126 

59 
36 
13 

1842 

--------- 
64.53% 
37.95% 

564.73% 

--------- 
72.44% 
56.60% 

390.85% 
CONTAINER DIRAC 1.0.2 ME 

FAST ME 
PROPOSED 3DRS 
FULL SEARCH  

226 
220 
216 
228 

37.3489 
37.2969 
37.6411 
37.3572 

43 
12 
6 

1842 

--------- 
53.56% 
36.57% 

675.45% 

--------- 
71.68% 
58.44% 

430.73% 
HIGHWAY DIRAC 1.0.2 ME 

FAST ME 
PROPOSED 3DRS 
FULL SEARCH  

281 
280 
267 
283 

38.3707 
38.1008 
38.1825 
38.4963 

49 
32 
12 

1842 

--------- 
69.18% 
40.55% 

740.90% 

--------- 
76.67% 
61.07% 

482.13% 
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