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ABSTRACT

Rate distortion optimization (RDO) algorithm plays the vital role in

the up to date hybrid video codec H.264/AVC. The RDO algorithm

of H.264/AVC reference software is built up by assuming that the

transformed residues are memoryless variables. However, our ex-

periments reveal that, for some sequences, the strong temporal cor-

relations exist in the prediction residues. This paper extends the

Lagrangian optimization techniques by modeling the transformed

residues as the first-order Markov source and calibrating the dis-

tortion model with the piecewise approximation function. The pro-

posed algorithms adjust the Lagrangian multiplier dynamically to

improve the overall coding quality. Comprehensive experiments tes-

tify that, as compared with the JM reference software, our optimiza-

tions can achieve up to 1.875dB coding gain. Moreover, our algo-

rithms posses more robust coding performance and introduce less

computational overhead than the Laplace distribution based meth-

ods. The inherent short process latency makes it possible to cooper-

ate our algorithms with rate control operation. Last but not least, the

proposed approach is also useful for the emerging standard, HEVC.

Index Terms— Lagrangian Multiplier, Rate Distortion Opti-

mization, Hybrid Video Coding, H.264/AVC, HEVC

1. INTRODUCTION

The archetypal block-based hybrid video coder, such as the state-

of-art video coding standard H.264/AVC [1], subdivides the current

frame into macroblocks (MBs) and derives the prediction signals

from previously decoded pixels in the same or other frames, which

are denoted as Intra or Inter motion compensation, respectively. To

improve the accuracy of motion-compensation, the prediction sig-

nals of one MB in H.264/AVC can be either replicated from previ-

ously decoded frames, or generated by using one choice of the seven

Inter prediction modes or the seventeen Intra prediction modes. In

turn, judiciously selecting the best prediction mode is the critical

problem for the operation control of the encoder. For the variable

block size motion estimation, the prediction errors are ameliorated

with the increase of the partition number, but in this process, the rate

cost for the side information, including the motion vector differences

and the reference frame indices etc., is deteriorated. Obviously, the

distortion cost and the rate overhead must be considered jointly in

the optimal mode selection algorithm.

As many other international standards, H.264/AVC merely stip-

ulates the stream syntax for the decoder, and leaves the encoder con-

trol optimizations open. In the current video codec, the mode se-

lection problem is normally denoted as rate-distortion optimization

(RDO) [2], which aims at minimizing the distortion under the given

∗This work is funded by TNList cross-discipline foundation and Nature
Science Foundation of China (60833004).

rate constraint. The classical solution converts the constrained prob-

lem to the corresponding unconstrained counterpart by introducing

the Lagrangian multiplier. The RDO algorithm recommended by

H.264/AVC reference encoding software minimizes the Lagrangian

cost function, which is written as

min{J = D(I,Q) + λmode · R(I,Q)}, (1)

where I represents the coding mode, Q is the quantization interval.

The Lagrangian multiplier λmode is employed to evaluate the rate

cost R(I,Q) with respect to the current distortion D(I,Q). Ac-

cording to the analysis of [3], the rate-distortion curve is convex hull.

The minimum of the Lagrangian cost function (1) is achieved when

its derivative is equal to zero, i.e.,

λmode = −dD

dR
. (2)

In comparison with the heuristic Lagrangian multiplier estima-

tion methods[4], the analytical counterparts [2, 5] have the advan-

tages in sense of the computational complexity and the estimation

accuracy. Assuming that the transformed residual coefficients are

memoryless and are uniformly distributed within each quantization

interval, Sullivan deduced that the Lagrangian multiplier should be

linear with Q2 [2]. The experimental results complied well with the

theoretical analysis, especially with small and moderate quantization

interval values. However, it was also found that the experimental

Lagrangian multiplier amplitudes of some sequences, such as news,

were larger than the analytical value. The underlying reasons for this

deviation were not investigated.

In literature [5], Li formulated the adaptive Lagrangian mul-

tiplier by using the Laplace distributed transform coefficients as-

sumption, and applying the unilateral differential entropy. Whereas,

the unilateral differential entropy based rate model cannot remain

invariant under the coordinate transformation[3]. Furthermore, to

maintain the accuracy of the proposed RD-models, a set of complex

escape methods are devised in [5] to detect the mismatched cases.

Even so, for the high resolution video sequences, the proposed algo-

rithms in [5] still deteriorated the coding quality slightly. Moreover,

it is hard to efficiently embed the above algorithms into rate control

operation.

In this paper, we develop the dynamic Lagrangian multiplier

algorithms by exploiting the inherent correlations in the prediction

residues and using the piecewise approximated distortion model.

The extensive experiments demonstrate our proposals can obtain up

to 1.875dB quality gain in BDPSNR, while maintaining the stable

performance and the low the computational complexity. The low

processing latency makes our algorithms improving the coding gain

as embedded in rate control operation.

The rest of this paper is organized as follows. In Section 2, we

provide the first-order Markov chain based rate model and the piece-

wise approximated distortion model, and then, describe the overall
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Table 1. E(|r|) over QCIF, CIF and HD720p

QCIF E(|r|) CIF E(|r|) HD720p E(|r|)

Container 0.90386 Container 0.84011 City 0.35556

News 0.88103 News 0.83592 Crew 0.34822

Missam 0.64677 Waterfall 0.75274 Mobcal 0.32867

Foreman 0.50221 Foreman 0.35548 Harbour 0.31972

Football 0.17383 Mobile 0.32185 Parkrun 0.08503

adaptive Lagrangian multiplier algorithms in detail. Experiments are

presented in Section 3 to justify our proposals. Finally, conclusions

are drawn in Section 4.

2. ADAPTIVE LAGRANGIAN MULTIPLIER

The current rate-distortion models (RD-models) adopted in H.263

and H.264 are developed on two conditions: First, the transformed

residues are memoryless variables; Second, the source are uniformly

distributed within each quantization interval (Q). However, it is ob-

served that, in some test sequences, the strong dependencies exist

among the residues in the successive frames, and the uniform distri-

bution assumption can not stand with the increase of Q. In this sec-

tion, we first investigate the correlations of the prediction residues,

and construct the corresponding first-order Markov chain based rate

model. Thereafter, the piecewise approximated distortion model is

developed. Finally, the overall Lagrangian multiplier formulations

from the proposed RD-models are derived.

2.1. First-Order Markov Chain Based Rate Model

For each 4 × 4-block C, with the corresponding prediction block

P indicated by the motion vector, the correlation criterion of one

4× 4-block prediction residues is defined as

r =
16
∑

cijpij −
∑

cij
∑

pij√
16
∑

c2ij − (
∑

cij)2
√

16
∑

p2ij − (
∑

pij)2
, (3)

where i, j ∈ [0, 3], cij and pij represents the prediction residues

of C and P , respectively. Several representative QCIF, CIF and

HD720p sequences are selected to testify the temporal-domain cor-

relations of residues. The averaging |r| values over 100 P-frames

of 15 sequences, denoted as E(|r|), are illustrated in Table 1. It is

revealed that the following properties are possessed by prediction

residues:

1. Naturally, the prediction residues of dormant MBs, such as

Container and News, always have the strong dependency in

temporal-domain.

2. The correlations of the MBs with the detailed textures or the

high motions are weak.

3. The correlations of residues diminish with the augment of the

frame size. For the HD720p sequences, the maximum value

of E(|r|) is even less than 0.36. This is because that com-

pacting the CCD sensor size inherently increases the noise-

to-signal ration of the captured pictures.

Let Φt(u, v) designate the N × N block to be encoded,

and Φ̂t(u, v) is the corresponding decoded signals. Φ̂t(u, v) is

composed of Φt(u, v) and the additional quantization noise Dt

Let Δt+1(u, v) = Φt+1(u, v) − Φt(u, v) and Δ̂t+1(u, v) =

Φt+1(u, v) − Φ̂t(u, v) are zero-mean random variables. The

variances of Δ̂t+1(u, v) and Δt+1(u, v), which are labeled as

δΔ̂t+1(u, v) and δΔt+1(u, v), can be formulated as

δ2
Δ̂t+1

(u, v) = δ2Δt+1(u, v) +Dt. (4)

When Δ̂t(u, v) and Δ̂t+1(u, v) are viewed as the first-order

Markov source with the correlation r, with the small quantization

errors, T. Berger [3] deduced the explicit rate-distortion expression

Rt =
1

2
ln

(1− r2)δ2
Δ̂t

(u, v)

Dt

, (5)

in which, δ2
Δ̂t

(u, v) denominates the variance of Δ̂t(u, v). Equation

(5) yields the Lagrangian multiplier as

λmode = 2Dt, (6)

which is identical to the memoryless one deduced in literature [2].

On the other hand, for the larger values of quantization errors,

the precise rate model employs the Clausen’s function, which is ex-

pressed with the tabulation form [6]. To derive the closed form of

rate model with respect to the current quantization interval Qt, we

simplify the investigation by following the motion estimation proce-

dure adopted by the hybrid video coder. As pointed out by (4), the

perturbation of Qt affects the rates of not only the current tth frame,

but also the following (t + 1)th frame, which uses the tth decoded

pixels as the prediction signals. The impact of the perturbation of

Qt to the rates is written as

dR

dQt

=
dRt

dQt

+
dRt+1

dQt

, (7)

in which, Rt and Rt+1 represent the rates of the current and the next

frames, respectively. In practice, increasing Qt compresses the rates

of the tth frame Rt, whereas dilates the rates of the next frame Rt+1,

coming from the increased δΔt+1(u, v), as shown by (4). Supposing

that

Rt =
1

2
ln

(
a · δ

2
Δ̂t

(u, v)

Dt

)

Rt+1 =
1

2
ln

(
a ·

δ2
Δ̂t+1

(u, v)

Dt+1

)
,

(8)

where, a = 1 for Gaussian distributed residues, and a = e
π

for

Laplace distributed residues, substituting (4) and (8) into (7) yields

λmode = −dDt

dQt

dQt

dR
=

2Dtδ
2
Δ̂t+1

(u, v)

δ2
Δ̂t+1

(u, v)−Dt

. (9)

It should be noted that Dt+1 is determined by Qt+1, and hence,

dDt+1/dQt is equal to zero in the deduction of (9).

2.2. Piecewise Approximated Distortion Model

Gaussian distribution and Laplace distribution are both generally

adopted models for analyzing the transformed residues. In this sec-

tion, we first investigate the distortion model based on both Laplace

and Gaussian distributions via the numerical method, and then derive

the piecewise approximated distortion model.

The whole distortion is achieved by summing up the error com-

ponents in each quantization interval, which is formulated as

DC =aδ2
[∫ 5

6
γ

0

y2p(y)dy+
N∑
i=1

∫ iγ+5

6
γ

iγ− 1

6
γ

(y−iγ)2 p(y)dy

]
, (10)
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Fig. 1. Piecewise Approximated Analysis of Distortion Model DC

in which, δ represents the variance of transform coefficients, γ =
Q/δ, p(y) = exp(−0.5y2) and a =

√
2/π for Gaussian distribu-

tion, and p(y) = exp(−√
2y) and a =

√
2 for Laplace distribution.

For the original distortion model adopted by H.264/AVC is

DT = 0.1088 ·Q2 ≈ 0.68 · 2QP−12

3 , (11)

the ratio between DC and DT is depicted by Fig.1.

In our experiments, the distortion model developed on the Gaus-

sian distribution outperforms the Laplace based one. Therefore, we

apply the following piecewise approximation to explicitly express

the distortion model.

D̃ =

⎧⎨⎩ (1.8− 0.2γ) · 0.68 · 2QP−12

3 γ ≤ 2

(2.3− 0.45γ) · 0.68 · 2QP−12

3 2 < γ ≤ 4
(12)

In our distortion model, we neglect the cases when γ > 4. This is

mainly because that, when the coefficient value is much less than Q,

it is prone to be eliminated as zero during the quantization, which

will play the trivial role in the Lagrangian optimization.

2.3. Adaptive Lagrangian Multiplier Algorithm

The proposed Lagrangian multiplier updating is conducted in an

MB-by-MB manner for P- and B-frames. Namely, after the coding

of one MB, with the obtained DCT coefficients and motion vectors

of current MB, the Lagrangian multiplier is adjusted accordingly,

and the updated Lagrangian multiplier will be applied in the fol-

lowing MB coding process. From (6), (9), and (12), the dynamic

Lagrangian multiplier algorithm is described as Fig. 2.

δ2
Δ̂t

(u, v), in which u, v ∈ {0, 1, 2, 3}, denotes the averaging

variances of 4 × 4-DCT coefficients indexed with (u, v), which are

derived from the 256 4 × 4-DCT coefficients of current MB. The

averaging motion vector amplitude of 16 4 × 4-blocks in current

MB is computed as

|mvLi| = 1

16

3∑
j=0

3∑
k=0

(|mvxLi(j, k)|+ |mvyLi(j, k)|)

mvmx = max(|mvL0|, |mvL1|)
(13)

in which, the subscript Li(i ∈ {0, 1}) denominates the reference

picture list, i.e., list 0 or list 1. If mvmx is greater than one-pixel,

the current macrblock is identified as the fast motion block, of which

the DCT coefficients are assumed to possess the weak correlations in

temporal-domain, and hence, the change of Lagrangian multiplier is

equal to s0D̃t; On the other hand, for the dormant MB, we apply the

n = 0; Δλ = 0;
Loop u and v

If (δΔ̂t
(u, v) > 0) {

γ =
Q

δΔ̂t
(u, v)

; Derive D̃t from (12);

If ((mvmx >1-pel and γ ≤ 4) or (mvmx ≤1-pel and γ < 0.5)) {
Δλ = Δλ+ s0D̃t; n++;

}
Else If (mvmx ≤1-pel and γ ≤ 4) {

Δλ = Δλ+ s0s1D̃t

δ2
Δ̂t

(u, v)

δ2
Δ̂t

(u, v)− D̃t

; n++;

}
}

End Loop

If (n > 0) λmode = (1− w)λmode + wΔλ/n;

Fig. 2. Pseudo Coding of Updating Lagrangian Multiplier for the tth

MB (w is the reciprocal of MB number in one frame)

approach as shown in Section 2.1 to refine the Lagrangian multiplier

value.

It should be noted the inherent hindrance in (9). That is, when

encoding the tth frame, it is infeasible to obtain δ2
Δ̂t+1

(u, v), which

belong to the following frame. Supposing the strong dependencies

between the successive frames, we use δ2
Δ̂t

(u, v) to approximate

δ2
Δ̂t+1

(u, v) in Fig.2. s0 and s1 are the empirical parameters. s0
is inherited from the JM reference software, which is defined as

s0 =

⎧⎪⎨⎪⎩
1.0 P− frame

clip

(
2.0, 4.0,

QP − 12

6.0

)
B− frame

, (14)

where the function clip(a, b, x) confines the value of x in the range

of [a, b]. s1 is determined by the slice type, the quantization param-

eter (QP ), the successive B-frame number (β), mvmx, and γ, which

is expressed as follows. With the increase of successive B-frame

number β, the correlations of P-frame residues are weaken, and the

magnitude of s1 shrinks accordingly.

s1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B−Frame−−−−−−→
{

1.0 γ<2 or QP>28

0.9 otherwise

P−Frame−−−−−−→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

QP>28−−−−−→
{

max(0.7,1.0−0.05β) γ<2

max(0.7,1.0−0.10β) γ≥2

QP≤28−−−−−→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
mvmx=0−−−−−−→

{
max(0.7,1.0−0.1β) γ<2

max(0.7,0.9−0.1β) γ≥2

mvmx �=0−−−−−−→
{

max(0.5,0.75−0.1β) γ<2

max(0.4,0.7−0.15β) γ≥2

,

(15)

3. EXPERIMENTAL RESULT

The following experiments integrated the proposed algorithms into

the H.264/AVC reference software JM17.0, and the original method

was used as the benchmark. The simulation conditions were defined

according to the recommendations of literature [7]. Specifically, The

test sequences were in YUV 4:2:0 format; We adopted a single slice

per picture; The search ranges were defined as ±16 for QCIF se-

quences, ±32 for CIF sequences, ±48 for SD576i sequences, and
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Table 2. Coding Quality Analysis of QCIF and CIF

Seq. BDBR BDPSNR Seq. BDBR BDPSNR

(QCIF) (%) (dB) (CIF) (%) (dB)

Container -17.539 +0.86667 Container -14.424 +0.48022

News -5.7871 +0.27214 News -4.7685 +0.21186

Hall -5.5695 +0.27547 Akiyo -13.736 +0.58285

Saleman -11.107 +0.43747 Waterfall -7.3968 +0.24781

Foreman -1.7447 +0.07044 Foreman -0.9349 +0.03721

Carphone -3.3232 +0.13423 Tempete -0.7798 +0.02435

Average -7.5118 +0.33427 Average -7.0067 +0.26405

Table 3. Coding Quality Analysis of SD576i and HD720p

Seq. BDBR BDPSNR Seq. BDBR BDPSNR

(SD576i) (%) (dB) (720p) (%) (dB)

Stockholm -2.1979 +0.08472 City -2.5416 +0.08571

Mobcal -1.7498 +0.06291 Mobcal -1.7892 +0.04751

Shields -1.0721 +0.03892 Shields -0.0092 +0.00080

Football -0.0188 +0.00119 Harbour -2.7132 +0.08192

Average -1.2597 +0.04694 Average -1.7633 +0.05399

±64 for HD720p sequences, respectively; The reference frame num-

ber was set as 5; The high complexity rate-distortion optimization

(RDO ON) and the GOP with one leading Intra prediction frame (I-

frame) followed by the Inter prediction frames (P- or B-frames) were

applied.

To evaluate the coding quality of the luminance and the chromi-

nance components jointly, in the coding quality comparisons, we

adopted the combined PSNR metric (PY UV ) [5] as follows

PY UV = (4PY + PU + PV )/6. (16)

The fixed QP experiments are carried out with QPP = {28, 32, 36,
40}. The quantitative coding efficiency analysis was conducted on

the basis of the average PY UV gain (BDPSNR) and the average rate

reduction (BDBR) [8], respectively. The (+) sign in BDPSNR and

(-) sign in BDBR indicate the coding gain.

Twelve representative QCIF and CIF video sequences with 30-

fps frame rate and various motion and texture features were tested

to verify the proposed algorithms under baseline profile, in which

one leading I-frame followed by 99 P-frames and CAVLC entropy

coding were applied. The associated results in terms of BDPSNR

and BDBR were summarized in Table 2. The averaged coding gains

are 0.334dB and 0.264dB for QCIF and CIF sequences, respec-

tively. BDPSNR represents the average PSNR gain. In fact, the peak

PSNR gain is greater than the BDPSNR value. For example, the

peak PSNR gain (1.06133dB) was obtained in Container QCIF. It

is observed that the coding gain was limited for the sequences with

weakly correlated residues, such as Foreman and Tempete. This

phenomenon was well consistent with the theoretical investigation.

The averaging coding gain for low resolution sequences is 0.299dB,

approaching the performance (0.34dB) of the work in literature [5].

Four SD576i sequences with 25-fps frame rate and four HD720p

sequences with 50-fps frame rate, were used to verify the perfor-

mance of our algorithms on the high resolution sequences. The

adopted main profile settings include CABAC and GOP=IBBP

(I+59P+118B). The coding quality results are shown as Table 3. As

mentioned in Section 2.1, the high resolution sequences generally

possess low correlations in residues, and this feature constrains the

performance of our methods.

The prominent advantage of our proposals is that our algorithms

can provide coding gain when embedded in rate-control. The cod-

Table 4. Coding Results with Rate Control On

Seq. BDBR BDPSNR Seq. BDBR BDPSNR

(QCIF) (%) (dB) (CIF) (%) (dB)

Container -29.994 +1.87481 Container -14.715 +0.48490

News -5.8356 +0.28421 News -3.8683 +0.17865

Hall -4.0241 +0.20254 Akiyo -2.6878 +0.09243

Saleman -8.6066 +0.35446 Waterfall -4.7754 +0.17292

Foreman -1.4405 +0.05584 Foreman -0.7499 +0.02775

Carphone -3.0881 +0.13169 Tempete -0.0083 +0.00053

Average -8.8314 +0.4839 Average -4.4675 +0.15953

ing results of representive sequences with rate control enabled are

illustrated in Table 4.

As compared with the Laplace distribution based Lagrangian

multiplier [5], the proposed Lagrangian multiplier optimization

achieves the similar coding quality for the low resolution video

sequences, while possessing the following advantages

• The computational complexity of our algorithms is lower than

the counterpart. When employing fast full search and five

reference frames, the additional coding time of our tests is

less than 0.03%. In contrast, this merit is 0.05% in [5].

• Our algorithms have robust coding performance. Specifically,

on average, 0.047dB and 0.054dB coding quality gains were

obtained for our SD576i and HD720p tests, respectively. In

contrast, the schemes proposed in [5] introduced an averaged

-0.02dB coding quality loss.

• The prominence lies on that our Lagrangian multiplier

schemes cooperate well with rate control operation, which is

widely adopted in practical applications.

4. CONCLUSIONS

In this paper, we construct the adaptive Lagrangian multiplier by

developing the first-order Markov chain based rate model and the

piecewise approximated distortion model. The proposed Lagrangian

multiplier algorithms universally contributes to the coding qual-

ity improvement. For low resolution video coding tests, up to

1.875dB gain in BDPSNR is achieved. As compared with the orig-

inal Laplace distribution based Lagrangian multiplier schemes, our

proposals have the advantages in sense of low computational inten-

sity, robust coding performance, and being friendly to rate control

operation.
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