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ABSTRACT 

Spectral matting is a useful technique for image matting 
problem. A crucial issue of spectral matting is to determine 
the number of matting components which has large impacts 
on the matting performance. In this paper, we propose an 
improved framework based on spectral matting in order to 
solve this limitation. Iterative K-means clustering with the 
assistance of the modularity measure is adopted to obtain 
the hard segmentation that can be used as the initial guess of 
soft matting components. The number of matting 
components can be determined automatically because the 
improved framework will search possible image 
components by iteratively dividing image subgraphs.  

Index Terms— Image matting, Spectral matting, 
Modularity 
 

1. INTRODUCTION 
 
Image matting is a technique which estimates the 
foreground alpha matte and extracts the foreground object 
from an image. In image matting, the image color of a pixel 
is assumed to be a linear combination of the corresponding 
foreground and background colors, according to the so-
called compositing equation (1). 
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In (1), Ii denotes the color of the i-th pixel, Fi and Bi 
denote the foreground and background colors respectively, 
and αi is the foreground alpha matte at the i-th pixel. In the 
image matting problem, input image I is given, foreground 
alpha matte α jointly with the foreground image F and 
background image B need to be solved at each pixel. Since 
the unknown variables are much more than equations, it is 
an under-constrained problem and it is challenging to extract 
a precise α with or without limited user input. 

Spectral matting proposed by Levin et al. [1-2] is one of 
the popular image matting techniques [3-5]. It can extract 
mattes not only two layers but also multiple layers [6]. They 
use the eigenvectors of matting Laplacian to obtain matting 
components. To determine the proper number of matting 
components is a major challenge of spectral matting [2]. 
This fundamental difficulty also exists in all spectral 
segmentation methods. To overcome this challenge, we 
propose an iterative dividing process to find enough matting 
components automatically. Given an initial number of 

matting components, it will automatically find the matting 
components. A stopping criterion, modularity measure [7], 
is adopted in this paper to terminate the dividing process.  
  The rest of the paper is organized as follows. Spectral 
matting is briefly introduced in section 2. In section 3 we re-
formulate the problem and propose the improved framework 
to solve the major limitation of spectral matting. Results of 
visual and quantitative comparisons are provided in section 
4. Finally, conclusions are given in section 5. 
 

2. OVERVIEW OF SPECTRAL MATTING 
 
Spectral matting, which combines spectral segmentation 
techniques with soft image matting, is a closed form 
solution to the image matting problem. A cost function is 
derived and the image matting problem is linked to an 
optimization problem. Compositing equation (1) can be 
rewritten and approximated by (2) in a small window w. By 
using (2) as the approximation of alpha matte, a cost 
function is defined by (3).  
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Now the image matting problem is transformed to an 
optimization problem. To minimize the cost function (3), 
they minimize J(α,a,b) by choosing the best a and b first. As 
a result, the objection function becomes a quadratic form in 
α, as shown in (4), where L matrix is called matting 
Laplacian, whose (i,j)-th element is defined by (5), where μk 
is a 3x1 mean vector and Σk is a 3x3 covariance matrix of 
pixel’s color information Ii in a window wk with the window 
size |wk|, ε is a parameter used for the regularization term in 
(3). 
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Now the optimization problem is to minimize the cost 
function defined by (6) (for more user input information as 
supervised matting, there are more constraint equations). 
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Fig. 1. Flowchart of the spectral matting framework [1-2] and the improved 

framework, the example image is from [1]. 
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It is still not easy to directly solve the optimization problem 
(6). Consequently, the spectral method, which analyzing the 
smallest eigenvectors of matting Laplacian, is adopted to 
segment the input image into multiple components first and 
then the hard segmentation is used to produce soft matting 
components. Finally, the grouping mechanism which can be 
unsupervised or supervised is used to obtain the foreground 
matte. Correspondingly, the image compositing equation (1) 
is extended to K-layer compositing (7) and a layer image 
operated by its corresponding alpha component, αk, can be 
regarded as a soft image component in the input image. 
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As a result, Fig. 1 summarizes the flowchart of the spectral 
matting framework presented in [1-2].  

 
3. IMPROVED FRAMEWORK FOR SPECTRAL 

MATTING 
 
The optimization of minimizing the cost function (4) can be 
approximated as a vector partitioning problem which try to 
segment vectors formed from the smallest eigenvectors of 
the matting Laplacian L. 

Cluster indication vectors m1, m2, …, mK, which are the 
output of the dash-line block in Fig. 1, are defined by (8), 
where nk is the number of pixels in the k-th component. 
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If we consider the K-layer matting, the costs of matting 
components belonging to the foreground at the output of 
hard segmentation can be written as following 
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where UΛUT is the eigendecomposition of L with 
eigenvalues λ1 ≦ λ2 ≦ … ≦ λn, and β is a threshold of 
eigenvalues. We can represent (9) as 
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To minimize (10) is equivalent to (11) as follows, 
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where nF is the number of pixels in the foreground. Let us 
define the p-dimensional vertex vector vi  and cluster vector 
Vk as (12), then (11) becomes (13). 
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If we neglect the second term in (13), the optimization 
problem looks like the vector partition problem which tries 
to find a division of vectors such that the sum of square 
norm of cluster vectors is maximal. However, if we consider 
the cost of not only the foreground matte but also the 
background matte, (13) should be modified to (14), where n 
is the number of pixels in the image. Since n is a constant, 
now the optimization problem is equivalent to the vector 
partitioning problem. 
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To solve the vector partitioning problem in a feasible way, 
K-means clustering can be regarded as a heuristic algorithm. 
When K-means clustering is finished, each image pixel is 
classified to an image segment correspondingly. 

To obtain an appropriate hard segmentation of an image 
can be regarded as a graph partitioning problem where the 
matting Laplacian L describes the graph structure. To find 
possible matting components, the number of matting 
components is a critical parameter. Hence, this study aims to 
find a proper graph partition pattern from the test image 
automatically. Modularity measure [7-8] is a powerful 
measure used to quantify the fitness of a division pattern for 
a given graph. It is defined by the number of edges within 
subgraphs minus the expected number in an equivalent 
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graph with edges placed at random. Suppose that there are K 
clusters in a graph of n vertices. The modularity of the graph, 
Q, is defined as 
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where Aij is the number of edges between vertices i and j; E 
is the total edges in the graph; di and dj are the degrees of 
the vertices i and j respectively. Since L describes the graph 
structure, Aij and di are defined. 

As mentioned, the major limitation of spectral matting is 
that the number of matting components is a critical 
parameter which influences the matting performance but 
lacks of an algorithm to understand the appropriate setting. 
When the number of matting components is smaller than the 
true image components, it may result in bad matting 
components which consist of dissimilar image objects. To 
solve this problem, we do not apply only once K-means 
clustering to the smallest eigenvectors of matting Laplacian. 
Instead, we apply iterative K-means clustering for the 
purpose of further dividing a cluster if it contains dissimilar 
image objects. Correspondingly, the graph is divided into 
subgraphs and every subgraph may be divided again. To 
stop the dividing process, the modularity (15) is adopted to 
judge whether the dividing pattern can increase the 
modularity of a subgraph or not. Besides, with the 
modularity we can search a range of small numbers to find 
the best number of clusters to divide the subgraph. Since the 
modularity is used to find the community structure in 
networks, it is similar to find image components in an image. 
Consequently, the dividing process is listed in the following 
steps. 
1) Pick up p smallest eigenvectors of L to form the data 

matrix, which represents n data in p-dimensional vector 
space. Apply K-means clustering using number of 
clusters C0. 

2) For each cluster of 1), form the data matrix, which 
represents nk data in p-dimensional vector space. Apply 
K-means clustering using number of clusters 2, 3,…, C1, 
and calculate the corresponding modularity using (15). 

3) If the maximum total modularity of sub-clusters divided 
from the cluster is more than the original modularity of 
the cluster, then execute the dividing pattern of K-
means result. Otherwise, the cluster will not be further 
divided any more. When a cluster cannot be further 
divided, it enters the “indivisible state”. 

4) For each cluster which does not enter the indivisible 
state, recursively perform 2) to 3) until all clusters enter 
the indivisible state. 

5) After 4), cluster indication vectors m1, m2, …, mK, are 
used to generate the soft results of matting components. 

As a result, the iterative K-means clustering divides the 
image into multiple image components automatically. 
Compared with the original method (only once K-means), it 
can find more image components potentially with the 

assistance of the modularity measure. The flowchart of the 
improved spectral matting is also shown in Fig. 1. The first 
advantage of the improved spectral matting is that the 
parameter of the number of clusters is not critical now 
because the dividing process is automatically performed to 
find appropriate image components. The second advantage 
of the improved spectral matting is that finding sufficient 
image components is critical to obtain a pure foreground 
alpha matte in some cases. As shown in Fig. 1, matting 
components are grouped to form the foreground alpha matte. 
If one matting component contains one region belonging to 
the foreground and the other region belonging to the 
background, the foreground matte may be imperfect. To 
avoid this case, it is necessary to find sufficient image 
components.  
 

4. RESULTS AND DISCUSSIONS 
 

Fig. 2 shows the increment of modularity measure in our 
iterative dividing approach, and a reference value of the 
modularity in original approach is also presented with 40 
matting components. The modularity of our iterative 
dividing approach increases and surpasses the reference 
value. Iterative dividing process stops when there is no more 
increment of modularity. The number of final matting 
components is also automatically determined.  

The hard decision results of the related example are 
shown in Fig. 3. There are still some components which can 
be extracted in the original method with fixed matting 
components number, and our iterative approach can divide 
them further. If some image components are not separated in 
the hard decision, it leads that some matting components 
which should be extracted are mixed. The performance of 
spectral matting is affected without enough components. 
Note that our iterative dividing approach may result in more 
components in a visible object. However, they can be 
further combined by the grouping mechanism show in Fig. 1. 

There is an example where the original approach fails to 
split possible image components in Fig. 4. The iterative 
dividing approach can find more possible components than 
the original approach can because the better hard decision is 
used to produce the soft matting components.  

Although a lager initial number of matting components 
can be set in original spectral matting algorithm, it is also 
hard to determine how many components is enough and to 
measure whether the segmentation of matting components is 
proper or not. Our approach can find components iteratively 
and find whether there are still possible components in an 
existing component using modularity measure. Table 1 lists 
the modularity of the original approach in spectral matting 
with different initial number of matting components and that 
of our iterative dividing approach. Note that the modularity 
of the original approach may not increase when the number 
of matting components increases because it may not find an 
appropriate dividing pattern of the image. 
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Fig. 2. Increment of the modularity in the proposed iterative 

dividing graph approach. The test image is Peppers (from [9]). 
 

     
(a)                              (b)                               (c) 

Fig. 3. (a) The input image is Peppers. (b) Hard segmentation 
result of the original approach. (c) Hard segmentation result of our 

iterative dividing approach. 
 

     
               (a)                                (b)                                (c) 
Fig. 4. Image components of Peppers that present the benefit of the 

iterative dividing approach. (a) One component of the original 
approach. (b) and (c) The corresponding components of our 

iterative dividing approach after appropriate grouping. 
 

Table 1. The modularity of each method. K denotes for the number 
of matting components. The test images are from [9]. 

 Method 
 

Image 
Original approach Our approach 

with C0=20 
Q (Final K) K=20 K=40 K=80 

Peppers 
512*512 

2.1292E+06 2.1456E+06 2.1452E+06 
 

2.26689E+06 
(74) 

Kid 
703*487 

2.8301E+06 2.8252E+06 2.9416E+06 2.97863E+06 
(74) 

Watch 
640*480 

2.4509E+06 2.4448E+06 2.5476E+06 2.626182E+06 
(57) 

 

     
(a)                           (b)                               (c) 

Fig. 5. The test images in Table 1. (a) Peppers. (b) Kid. (c) Watch. 
All test images are from [9]. 

5. CONCLUSIONS 
 

Spectral matting combines the spectral segmentation with 
image matting that leads to a useful solution of image 
matting in image and video editing. In this paper, we 
propose an improved framework to solve the technique 
limitation of spectral matting, that is, to determine the 
appropriate number of matting components. Iterative K-
means clustering with the assistance of the modularity 
measure can divide the input image to sufficient image 
components. As a result, an appropriate hard segmentation 
result can be generated for obtaining appropriate soft results 
of matting components. The number of matting components 
can be determined automatically because the improved 
framework will search sufficient image components by 
iteratively dividing image subgraphs. Furthermore, it is 
possible to prevent the situation that a matting component 
consists of both foreground and background objects. Hence, 
the proposed framework can improve the performance of 
spectral matting for a wide spectrum of applications. 
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