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ABSTRACT 
 
In this paper we deal with an unsupervised segmentation 
approach for images given by a synthetic aperture sonar 
(SAS).  The images with objects are segmented into high-
light, background and shadow. Since the shape features are 
extracted from these segmented images, correctness and 
precision of the segmentation are highly required. We im-
prove the expectation-maximization (EM) methods of San-
jay-Gopal et al. by using the gamma mixture model. More-
over an intermediate step (I-step) based on Dempster-Shafer 
theory (DST) is introduced between the E- and M-steps of 
the EM to consider the pixel spatial dependency. Finally, 
numerical tests are carried out on both synthetic images and 
SAS images. The results are compared to iterative condi-
tional mode (ICM) and diffused EM (DEM). Our approach 
provides segmentations with less false alarms and better 
shape preservation.  
 

Index Terms— Expectation-maximization algorithms, 
Dempster-Shafer theory, Theory of evidence, image seg-
mentation, Clustering methods 
 

1. INTRODUCTION 
 
Most recently, with the help of synthetic aperture sonars 
(SAS) much attention has been attracted to process the SAS 
images for the purpose of underwater mine countermea-
sures, since SAS can provide images with very high resolu-
tion of around a few centimeters. The mine countermeasure 
procedure is in general divided into  phases: mine-like 
object detection, object feature extraction and mine type 
classification. The image segmentation takes place during 
the first phase. An imperfect segmentation leads to low 
classification accuracy since the features used for classifica-
tion distort the key information in regard to the objects’ 
shape. Moreover, a poor segmentation can also bring into 
many false alarms which burden the work of classifiers.  

                                                 
*  The first author is a registered PhD student at the TU Darmstadt 
and works for his PhD project in the University of Applied 
Sciences Bremen. The second author is his project supervisor. 

In order to obtain an accurate segmentation, there are 
many algorithms proposed in the literature such as iterative 
conditional mode (ICM) [1] as well as expectation maximi-
zation (EM) based methods, i.e. an MAP estimator of Zhang 
et al. in [2] and the diffused EM (DEM) [3] of Boccignone 
et al. There is spatial dependency among neighboring image 
pixels. Thus in the energy function of ICM, a priori distri-
bution is incorporated, while Zhang et al. replaces the pixel 
class probability provided by the M-step of previous itera-
tion with an MRF based estimate. Boccignone et al. intro-
duce an anisotropic diffusion [4] step between each E- and 
M-step to realize the spatial dependency. ICM assumes that 
the probability of a pixel belonging to a specific class is 
given by one distribution (i.e. Gaussian or gamma distribu-
tion), but not a finite mixture model as in EM based me-
thods. Moreover, although it is assumed in the classical 
finite mixture model that the pixels are independently distri-
buted, our study shows that there is still some coupling due 
to the sharing of the same class probability by all the pixels, 
which controls the probability of a certain distribution with-
in the finite distribution mixture model.  

We adopt the structure of DEM and generalize the dif-
fusion step to an intermediate step (I-step). The distribution 
mixture model proposed by Sanjay-Gopal et al. [5] is cho-
sen. We substitute the Gaussian distribution with the gamma 
distribution, since a gamma mixture model is proven to be 
more suitable to approximate nonnegative distributions [6] 
and it also fits the SAS data in our study better. In addition, 
we apply the Dempster-Shafer theory (DST) [7] to the pixel 
clustering. The assignment of class index to a pixel of inter-
est relies on its neighborhood. The neighboring pixel pro-
vides some support that the pixel of interest belongs to the 
same class of this neighboring pixel. The algorithm we 
propose is applied to both synthetic as well as SAS images. 
ICM and DEM are also implemented and applied to the 
above images. Their results are used as benchmarks for 
comparison. 
 

2. EM BASED SEGMENTATION ALGORITHM 
 
2.1. Spatially Independent EM with Gamma Mixture 
Model 
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Let be the observed intensity of pixel , , and 
 is a set of probability density functions (pdf),  

is the parameter vector of function , with . 
denotes the number of classes. The binary value vector 

, , contains  elements. If , then 
, , , which means that pixel  be-

longs to class . Its corresponding label is then given 
as . The probability of that the -th pixel belongs to -
th class is given by .  

, , , , , , , , ,  is the complete 
data, and , , , , , is the parameter 
vector with , , . The conditional probabili-
ty density function  is given as 
 

 , (1) 

 
where the gamma pdf, , is given as  

 , (2) 

where , . The E-step of iteration  is derived 
similarly as in [5]  

 , (3) 

where  is the expectation of . We then maximize (1) 
and obtain the M-step, 

 , (4) 

 . (5) 

Finally,  can be obtained by solving the equation  

 , (6) 

where is the digamma function and the left side of (6) can 
be substituted by an approximation given in [8] .  
 
2.2. Dempster-Shafer Theory assisted EM segmentation 
 
The DST can be applied to pixel clustering. It is very similar 
to Bayesian probability theory, but the counterpart of pdf in 
DST is called basic probability assignment (bpa), . In 
contrast the argument of can be either an element or a set. 
In general, a finite set of class indexes , , is 
called the frame of discernment, which contains all the poss-

ible states of class label . Its power set is . 
The bpa of certain evidence fulfills the conditions: 
 , (7) 

 . (8) 

When more than one evidence is available, the information 
can be fused sequentially with the Dempster’s rule, e.g. 

evidences, 

  (9) 

In our application, the neighborhood of pixel  can 
be viewed as a pool of evidences as visualized in Fig. 1. The 
information of the neighbors is fused through (9) one by 
one. And the result is independent on the fusion ordering 
due to the commutativity of (9). If is of class , then 
it provides some support that pixel  is also of class . Its bpa 
is defined as 

 , (10) 

where and can be determined by 

 ,  (11) 

 . (12) 

and are the mean value and standard deviation of 
class ,  is the median of the pixel intensity of , and 

,  are positive constants. The choice of these two free 
parameters will be given in the section of numerical study. 
The  gives the total belief portion which can be given by 
pixel , and  counts the perfectness of the evidence itself, 
since the information supplied by an outlier is normally less 
plausible. Furthermore, since is distance dependent, it is 
necessary to normalize all the distance measures into the 
same scale by dividing the measures with  as in (12).  
 

 
Fig. 1. The pool of evidences for the center pixel . 

The decision-making of DST is still open, and there are 
many proposals in the literature, such as pignistic probabili-
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ty [9] and the expected cost function [10] . Since the simple 
belief structure is chosen in this paper as shown by (10), the 
results obtained from the pignistic level is identical to those 
from the bpa function. Hence, the decision-making at loca-
tion is given by 

 , , (13) 

where  is the bpa induced by fusing eight neighboring 
evidences in . During the DST step, we should finally 
turn the label information into  by  

 
,
, . (14) 

Hence, the proposed method called E-DS-M can be summa-
rized as follows: 

i. Initialization for E-DS-M 
ii. Run E-Step, and obtain  

iii. Perform a hard decision for , then get  

iv. Run DST clustering on , and with the help of 
(14) get  

v. Forward  to the M-step, substitute  with 
 in (4), (5) and (6). And then return to step ii 

until the results converge.  
 

3. NUMERICAL STUDY 
 
In this section we present the experimental results on both 
synthetic and real SAS images. Segmentation methods are 
firstly tested on synthetic images, since the ground truth is 
available. The accuracy can be solidly compared and veri-
fied. Secondly, they are applied to the real SAS images to 
evaluate their generalization ability to real data. EM based 
methods are very sensitive to the initial inputs. Therefore we 
choose the initialization scheme in [11] proposed by Fandos 
et al. The pixels of the input images are clustered by k-
means into a number of classes, which are more than re-
quired. The initial mean values of E-DS-M are the averages 
of the pixel mean values of the neighboring classes, which 
are obtained by k-means. 
 
3.1. Experiments on Synthetic Images 
 
There are two synthetic images whose dimensions are 

 pixels, and each contains three objects, i.e. either 
cylinder or truncated cone mines. The background is ripple 
sediment. The object regions and background are initially 
synthesized separately. The highlights and shadows are 
gamma distributed and the ripple background is simulated as 
proposed in [12] . The backgrounds are corrupted by multip-
licative noise.  Finally, we fuse the object region and back-
ground as follows 
 . (15) 

The free parameters of DST are set to , and 
. And the shape parameter  in (2) is initially set 

to 10 as the E-DS-M inputs.  
In Fig. 2 and Fig. 3, on the first row are ground truth 

and the synthetic images. Considering the comparison on 
the second row, it is obvious that the E-DS-M can suppress 
the ripple background much better than ICM and DEM. 
Moreover, we find that E-DS-M is also reliable when the 
object region is relatively small, e.g. when a truncated cone 
mine is considered. 
 

 
Fig. 2. Tests on Synthetic Image 1, cylinder mines. 

 
Fig. 3. Tests on Synthetic Image 2, truncated cone mines. 

 
3.2. Experiments on Real SAS Images 
 
At last, the segmentation methods are applied on real SAS 
images to verify their segmentation ability. All the images 
are of dimension , and the pixel intensity lies in 
the interval of .   

In Fig. 4 and Fig. 5, totally 10 images are tested by E-
DS-M, ICM and DEM. Although the results of the image 
No. 8 and No. 9 given by all the three methods are very poor 
due to the low image quality, E-DS-M outperforms the other 
two segmentation methods in most of the cases. It preserves 
the shape of object region better than ICM and DEM, while 
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ICM is more likely to enlarge the highlight area. And DEM 
is inclined to introduce more noisy segmentations. 

 

 
Fig. 4. Tests on real SAS images, No. 1-5. 

 
Fig. 5. Tests on real SAS images, No. 6-10. 

         
4. CONCLUSION AND FUTURE WORK 

 
In this paper, DST pixel clustering method is incorporated 
into the classical EM structure to suppress the noisy seg-
mentations when the image is corrupted. A simple belief 
structure is proposed to catch the belief portion provided by 
the evidence in the neighborhood. It considers not only the 
amount of belief the evidence can supply but also the per-
fectness of the evidence itself. And we also extend the spa-
tial independent model of Sanjay-Gopal et al. to a gamma 
mixture model. According to our tests, the E-DS-M outper-
forms the classical segmentation algorithms such as ICM 
and DEM.  

Some future work on spatial correlation of pixel labels 
is foreseen. DST clustering method adopting more compli-
cated belief structures should be considered, since the cur-
rent clustering depends highly on the choice of  and . 
The manner, in which the proposed E-DS-M reacts to devia-
tions in the initial shape parameter of the gamma distribu-
tion, should be investigated. Furthermore, the E-DS-M 
should also be applied to real SAS with ripple background 
to verify its advantages on ripple sediments. 
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