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Abstract—Perceptual image quality assessment (IQA) is an
important research topic of visual signal processing both in its
own right and for its utility in designing various optimal image
processing and coding algorithms. This work is concerned with an
issue that has been largely overlooked by the research community
of IQA, that is, the monotonicity, or lack of it, between the
subjective scores and the predictions of image quality metrics
(IQM) for images with compression artifacts. We analyze the
data of several well-known databases for IQA and expose among
them a large number of instances of non-monotonicity between
subjective and objective quality scores. Further, we observe that
a nonlinear dynamical model of 3D cusp catastrophe can well
explain the intricate relationship between the subjective and
objective quality scores. Our findings identify an inherent flaw
of current signal-distance or fidelity-based IQMs, which neglect
the psycho-physiological aspect of human visual perception. This
research suggests a new direction of IQA research and it also
sheds light on the design of subjective quality evaluation process.

Index Terms—image quality assessment; visual communica-
tion; catastrophe theory; nonlinear dynamical system

I. INTRODUCTION

In digital visual communication, bits should be spent to

maximize perceptual quality of the image/video delivered

to the intended viewer. A subjectively meaningful quality

metric of images/videos is a prerequisite for optimal design

of visual signal compression and communication systems.

Existing visual communication systems are designed under

the mean square error criterion (i.e., PSNR). But the percep-

tual validity of PSNR has long been questioned. Numerous

alternative image quality metrics (IQMs) have been proposed

for improved measurement of subjective visual quality. [1]–

[3]. In 1974, the international telecommunication union (ITU)

made a series of recommendations ITU-R BT.500 [4] on the

methodologies for subjective quality assessment of television

pictures. And following those recommendations, open subjec-

tive quality databases [5]–[7] were made available to facilitate

the research of image quality assessment (IQA). Although

IQMs have improved over the years in terms of increased

correlation between objective and subjective quality scores [8],

IQA remains a very difficult and challenging research area.

In our view, a minimum requirement of an IQM is the

following monotonicity. That is, the score of the IQM has to be

a monotonic function of the subjective opinion score given by

human viewers. However, we have discovered that all IQMs

in the literature fail to satisfy the above monotonicity over a

large number of instances drawn from the well-known IQA

databases. Fig. 1 plots subjective scores vs. IQMs predictions

for test image ‘woman’ (shown in Fig. 2) undergone JPEG

compression and non-eccentric patter distortion. The distorted

images and their subjective scores are taken from the widely

used LIVE [6] and TID2008 [7] databases. Note that subjective

scores can be in the form of either opinion score (MOS) or

difference mean opinion score (DMOS). Three IQMs, PSNR,

SSIM [2] and VIF [3], are examined. The data points in

Fig. 1 are linked according to the rank order of MOS/DMOS

scores, and they show that the IQM scores are not monotone

in MOS/DMOS.

In fact, the monotonicity has been regarded an important

performance measure of the IQMs by the video quality expert

group (VQEG) [9]. VQEG suggested using a 3-parameter

logistic function Sp = a1/
(
1 + e−a2(S−a3)

)
to map the IQM

score S to predicted scores Sp so as to account for the non-

uniformity between objective and subjective scores [10]. After

the nonlinear mapping, the Pearson linear correlation and the

Spearman rank order correlation are computed between S and

Sp respectively, as measurements of prediction accuracy and

monotonicity of the IQMs. In the example in Fig. 1, the

Pearson correlation for the IQMs are around 0.95 while the

Spearman’s rho or Kendall’s tau correlations are significantly

lower (0.6 ∼ 0.8) due the obvious non-monotonicity. The

example here is by no means exceptional, for the JPEG data

sets of LIVE database [6], non-monotonicity between DMOS

and predictions of PSNR, SSIM and VIF is found on almost

80% of the test images. And for the JPEG2000 data set of

Toyama database [5], roughly 64% of the images exhibit non-

monotonicity between MOS and PSNR,SSIM and VIF scores.

The fluctuation of performances of IQMs in terms of the

Spearman rank order correlation was noticed by Sheikh and

Bovic [8] and they conjectured that sometimes “the nature

of the data is such that Spearman rank order correlation is

not a good measure of IQM performances”, especially “when

image quality is perceptually the same for many distortion

strengths”. This paper shows that the complicated relationship

between subjective scores and IQM scores can be satisfacto-

rily fit by a nonlinear dynamical model, specifically, a cusp

catastrophe. The non-monotonicity corresponds to the bifur-

cation behavior of the cusp catastrophe. As a consequence,

the non-monotonicity, being an inherent feature of the cusp

catastrophe, cannot be modeled by any of the existing IQA

methods.

The rest of this paper is organized as follows: Section II

gives a brief introduction of the catastrophe theory and the

cusp catastrophe model. The cusp perceptual quality model

and the choice of control parameters are discussed in Section

III. Concluding remarks and directions for future research are

given in Section IV.
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Fig. 1. DMOS/MOS vs. PSNR, SSIM and VIF for test image ’woman’ from JPEG compression set of LIVE database [6] (left) and from non-eccentric
pattern artifact set of TID2008 database [7] (right).

Fig. 2. Test images from the Kodak database, from left to right: ’woman’, free
energy = 4.96bpp; ‘monarch’, free energy = 3.52bpp; ‘stream’, free energy
= 5.82bpp .

Fig. 3. The cusp catastrophe model for image quality assessment.

II. THE CATASTROPHE MODEL

Consider a gradient dynamical system

∂x

∂t
= −∂V (x; c)

∂x
,x ∈ �p, c ∈ �k (1)

where x is the state variable and c is the control variable

of the system. A basic premise of (1) is that the system

under study is driven toward some equilibrium state. In other

words, if the system is at some non-equilibrium state, as time

changes, the potential function V (x; c) tends to be minimized

with respect to system state x, and the system will return to

states ∂V (x; c)/∂x = 0. And the stable state is also called

the equilibrium of the system. Obviously, the equilibrium

corresponds to both the maxima and minima of the potential

function V (x; c). When the potential is at a local minimum,

the system is said to be in a stable state. When the potential

is at a local maximum, the system is in an unstable state

and given any external perturbation, it will return to a stable

state due to the mechanism of (1). Since virtually no practical

system is totally isolated from the rest of the world, most

of the gradient dynamical systems we encounter in the real

world are in stable states. The states where the Hessian matrix

of V (x; c) has zero eigenvalues are called the degenerate

equilibrium points. And at those degenerate points, the system

has bifurcation behavior as control variables change.

If we pose the problem of perceptual quality assessment as

the dynamical system in (1), the system can be simplified as

∂q

∂t
= −∂V (q; c)

∂q
, c ∈ �k (2)

where q is a scalar quantifying the subjective quality of an

image, whose various statistical and psychovisual features are

packed in the control vector c. The dynamics of the system

(2) suggests that the subjective judgement of image quality are

related to finding extrema of the potential function V (q; c).

Catastrophe theory, being a branch of bifurcation theory and

singularity theory, studies and classifies the sudden change

of behaviors in the neighborhood of degenerate points of the

potential function for the dynamical system. According to

the study of Thom [11], if the potential function has two

or fewer state variables and four or fewer control variables,

then the system can be characterized by only seven generic

forms (universal unfoldings) which are named elementary

catastrophes. In many disciplines of natural and social science,

e.g. physics, biology, economics, psychology, and etc, the most

widely used catastrophe model is the so-called cusp model

as it is the simplest catastrophe model capable of transiting

between equilibrium states. The potential function of a cusp
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catastrophe is

−V (q;α, β) = αq +
1

2
βq2 − 1

4
q4 (3)

where α and β are two control variables and the coordinates

(α, β) form a control plane for the system. The equilibrium

state of the potential function (3) is given by

∂V (q;α, β)

∂q
= α+ βq − q3 = 0. (4)

The number of solutions of the cubic function in (4) is

determined by the Cardano’s discriminant δ = 27α2 − 4β3:

if δ < 0 then the function has three solutions; and if δ ≥ 0,

the function has one solution. And on the control plane, the

set of points (α, β) satisfying 27α2 − 4β3 = 0 constitutes

the bifurcation lines and the set of points (α, β) satisfying

27α2 − 4β3 < 0 forms the bifurcation set. A graphical

demonstration of the cusp catastrophe is given in Fig. 3.

III. THE CUSP PERCEPTUAL QUALITY MODEL

To model the relationship between subjective and IQMs

scores using the the cusp catastrophe model, we have to

specify the control parameters α, β first. In Fig. 3, it is

noticed that for a given β the state parameter q traverses

from lower surface to upper surface as α increases. Higher α
value generally indicates better subjective quality. We define

the control variable α as a function of the IQM scores, e.g.,

α = b1S + b2. Using a function of IQM score rather than

the score itself reconciles a technicality: parameter α in the

cusp catastrophe can be negative but most IQM scores are by

definition non-negative.

However, the choice of control parameter β needs more

thought because of the complex relationship between q and

β given α. In fact, the tendency of q versus β is affected by

the relationship between α and β. Considering that α and β
are orthogonal in the control plane, ideally they should carry

mutually exclusive information on the image. As α is defined

as a function of IQM score assigned to a degraded image, β
should relate to some intrinsic properties of the original image.

We empirically discover that the cusp catastrophe model can

satisfactorily fit the non-monotonicity instances in existing

IQA databases such as LIVE, Toyama and TID2008, if β is

chosen as a linear function of the descriptive complexity of the

image. The IQA databases show that images of simple contents

tend to satisfy the monotonicity between MOS/DMOS and

IQM scores, whereas for images of higher complexity, the

monotonicity is more likely to be violated. For example,

Fig. 4 plots DMOS vs. PSNR, SSIM and VIF for JEPG2000

compressed images ’monarch’ (simple type) and ’stream’

(complex type) (the originals shown in Fig. 2).

To measure the descriptive complexity of the image, we

much question into the neurological and psychophysical mech-

anism of human vision. Particularly, we resort to the principle

of free energy recently proposed by Friston et. al [12] for

a understanding and approximation of the process of visual

perception. The free energy principle was proposed to unify

the brain theories in biological and physical sciences about

human action, perception and learning. Generally speaking,

the rationale behind free energy principle is that all adaptive

biological agents resist the natural tendency to disorder in

an ever-changing environment, as predicted by the second

law of thermodynamics. Therefore, the free energy principle

suggests that biological agents can somehow violate the sec-

ond law of thermodynamics by keeping their internal states

at low entropy level so as to maintain themselves within

some physiological bounds. And this goal is realized through

avoiding encountering ‘surprise’ under different environments.

Although the ‘surprise’ cannot be measured or avoided by

a biological agent directly, it can be upper bounded by a

term called ‘free energy’. As such, the minimization of free

energy implicitly minimizes ‘surprise’. The generative model

exclusively defines the system and the quality of the free

energy bound on ‘surprise’. Models with higher descriptive

power tend to explain the inputs better and keep the free

energy (and therefore ‘surprise’) lower. More importantly, the

free energy can be evaluated by a biological agent using

its internal (generative) model and external (sensory) states.

Given fixed inputs, the minimization is essentially a process

of fitting the internal generative model to the external sensory

states. This process echoes the Bayesian brain hypothesis

[13], which is a belief that our brain works with uncertainties

using optimal rules as studied in Bayesian statistics. Therefore,

the visual perception is an inference process of the brain

that actively predicts and explains sensations using internal

generative models.

For visual perception, the free energy principle and

Bayesian brain hypothesis both lead to the conjecture that

brain has an internal generative model for the scenes we lay

our eyesight on. The free energy principle suggests that the

brain always seeks the most ‘logical’ explanation of each given

scene by tuning its internal generative models. The gap be-

tween the external input and its generative-model-explainable

part should therefore be related to the complexity of the given

scene. In other words, the psychovisual complexity of an

image can be explicitly defined as the agreement between the

scene itself and the output of the internal generative model that

best describes the scene. And the image descriptive complexity

can be mathematically quantified by the uncertainty of the

residuals between the image and its predicted version by

the internal generative model. Mathematical formulations of

‘surprise’ and ‘free energy’ for visual perception can be

found in [14], where variational approximation of the internal

generative model with an linear model is also provided. And

the free energy values for the test images ’woman’, ’monarch’

and ’stream’ are also provided in Fig. 2, where ’stream’ with

much details of rocks and bushes has the highest free energy

value, whereas ’monarch’ with largely blurred background has

the lowest free energy value. The average free energy is 4.84

for test images in the JPEG subset of the LIVE database

with non-monotonicity between subjective and IQM scores of

PSNR, SSIM and VIF. While for images without the non-

monotonicity in the same data set, the average free energy is

only 3.43.
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Fig. 4. DMOS/MOS vs. PSNR, SSIM and VIF for test image ‘monach’ (left) and ‘stream’ (right) in JPEG2000 compression set from LIVE database [6].

With the cusp catastrophe model for IQA, as illustrated

in Fig. 3, the discussed monotonic or non-monotonic rela-

tionships between subjective and objective quality scores can

be well explained. For images of lower complexity, the IQM

scores are near Path 1 in Fig. 3, and the subjective scores

tend to change monotonically with IQM scores. For images

of higher complexity, the IQM scores approximately lie on

Path 2. On Path 2 there exist data points such that images

of higher (lower) IQM scores counterintuitively have lower

(higher) subjective scores (see point A on Path 2.a and point

B on Path 2.b in Fig. 3). This phenomenon is due to the fact

that given an image, its MOS or DMOS value assigned by

a subject depends on the order in the set of test images by

which this image is presented to him/her. In the subjective

viewing test, for images of high free energy, if a subject is

asked to assess the quality of image instances with decreasing

objective quality (e.g., with decreasing PSNR values) starting

from a high initial value, then the resulting points (α, β, q)
move along Path 2.a; on the contrary, if the subject is shown

image instances with increasing objective quality, the collected

data points move along Path 2.b.

Unfortunately, neither ITU nor VQEG has any suggestions

on a proper order of objective quality of image instances

used in the subjective viewing test. Most of the tests that

resulted existing IQA databases were conducted with random

orders of presentation. This causes the above mentioned non-

monotonicity between subjective and objective scores. Since

this non-monotonicity is inherent to existing IQA databases,

the performances of IQMs cannot be accurately quantified in

terms of rank order correlation as suggested by VQEG. And

the cusp catastrophe based quality model also explains the

fluctuations of the Spearman rank order performances of IQMs

across different images and IQA databases as noticed in [8].

IV. CONCLUSION

Non-monotonicity between subjective and objective scores
of popular databases for image quality assessment research,
although being counterintuitive, occurs with significant proba-
bility in some popular databases for image quality assessment
research. This intriguing phenomenon can be explained by a
cusp catastrophe model. This research opens up a new line of
enquiry into the design of fair subjective viewing tests, and

it also highlights the importance of accounting for nonlinear
psycho-physical properties of the human visual system when
designing subjectively meaningful image quality metrics.
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