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ABSTRACT 
 
Based on “ground truth” eye-tracking data, earlier research 
[1] shows that adding natural scene saliency (NSS) can 
improve an objective metric’s performance in predicting 
perceived image quality. To include NSS in a real-world 
implementation of an objective metric, a computational 
model instead of eye-tracking data is needed. Existing 
models of visual saliency are generally designed for a 
specific domain, and so, not applicable to image quality 
prediction. In this paper, we propose an efficient model for 
NSS, inspired by findings from our eye-tracking studies. 
Experimental results show that the proposed model 
sufficiently captures the saliency of the eye-tracking data, 
and applying the model to objective image quality metrics 
enhances their performance in the same manner as when 
including eye-tracking data. 1 
 

Index Terms— Visual attention, eye-tracking, image 
quality assessment, objective metric, human visual system 
 

1. INTRODUCTION 
 
Over the last several decades, we have witnessed remarkable 
progress in the development of objective metrics for the 
automatic prediction of perceived image quality. Novel 
research tends to further improve the reliability of objective 
metrics by taking into account visual attention of the human 
visual system (HVS). Modeling this aspect in an objective 
metric is not a trivial task mainly due to the fact that the 
mechanism of human attention when assessing image quality 
is not fully understood yet.  

To understand the basic added value of including visual 
attention in the design of objective metrics, “ground truth” 
data obtained from eye-tracking experiments are used [1]-
[3]. It is demonstrated in [1] that adding natural scene 
saliency (NSS) is beneficial to image quality prediction in 
general terms. However, for a real-world implementation the 

                                                 
1 The implementation of the model of visual saliency is available on the 
web-site: http://mmi.tudelft.nl/iqlab/index.html 

eye-tracking data need to be substituted by a computational 
model of visual saliency.  

A variety of models of visual saliency are available in 
literature, most of which are based on a bottom-up (scene-
dependent) framework (e.g. [4]-[7]). The most well-known 
model is the one proposed in [4], in which multi-scale image 
features, including intensity, color and orientation are 
combined into a single saliency map. The model in [5] is 
derived from the analysis of the statistics of image features 
at observers’ gaze, the model in [6] relies on the theory of 
maximizing information in a visual scene, and the model in 
[7] is based on combining current models of the HVS 
behavior. Directly applying these saliency models in the 
design of objective image quality metrics, however, is of a 
practical concern. First, the existing models are generally 
designed for a specific domain, and therefore, not 
necessarily applicable to image quality prediction. Second, 
they are intrinsically computationally expensive, which 
limits their use in real-time. Third, the accuracy of these 
saliency models in improving image quality prediction is not 
yet completely proved. Hence, it is highly desirable to 
develop a model for visual saliency, which is 
computationally efficient for real-time application, but still 
sufficiently reliable for image quality assessment.  

To develop such a saliency model, we rely on the multi-
scale approach taken in [4], but extend the idea by first 
refining the calculation of local contrast to achieve a more 
meaningful “object contrast” in the visual scene. In addition, 
our proposed model embeds two significant findings from 
our eye-tracking studies to further improve its efficiency and 
reliability. 
 

2. PROPOSED SALIENCY MODEL 
 
2.1. Findings from eye-tracking data 
 
Since most of the existing objective metrics are based on the 
luminance signal of an image only, we investigate whether 
also saliency can be modeled only with the luminance 
component without significantly compromising its accuracy. 
Results reported in [8] show that human visual attention for 
quality assessment is indeed insensitive to color. Hence, this 
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observation can be reasonably used to simplify the modeling 
of saliency, and the resulting saliency model can be directly 
implemented in objective metrics based on luminance only. 
Another important finding is that by integrating eye-tracking 
data of NSS to state-of-the-art objective metrics [1], the 
performance gain is non-existing for images without 
convergent salient features (i.e. a clear region of interest). 
This implies that the overall efficiency can be further 
improved by adaptively using the saliency model only for 
images with a clear region of interest. Both aspects are 
explicitly taken into account in the design of our model. 

2.2. Generation of the saliency map 
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Fig. 1. Schematic overview of the proposed model of visual 
saliency for objective image quality assessment. 

(a) (b)  

Fig. 2. Illustration of the principle of modeling saliency as object 
contrast: (a) the object contrast perceived as saliency in a global 
way, (b) the object contrast perceived as saliency in a local way. 

The schematic overview of our proposed model is given in 
Figure 1. It only uses the luminance component of the image 
material as input. The model is based on the principle that 
contrast is a dominant factor in human visual perception; an 
object that makes itself distinct (i.e. with high contrast) from 
its vicinity is most likely to attract human attention. Such 
“object contrast” can be perceived both on a global and local 
scale. As illustrated in Figure 2, the two birds and the rock 
as a whole stand out from the surrounding water; locally the 
white face of each bird pops out from its neighborhood. To 
simulate this perception, a multi-scale approach is employed 
for estimating saliency. Unlike the approach in [4], which 
generates saliency by calculating the pixel-by-pixel center-
surround differences between scales, we construct a saliency 
map by extracting contrast at each individual scale (hereafter 
referred to as “scale contrast”). As such, each scale contrast 
map represents the image features standing out at a specific 

scale, i.e. detailed features stand out at a fine scale, while 
macro features pop out at a coarse scale. Combining the 
scale contrast maps over all scales yields a perceptually 
more meaningful “object contrast” map, indicating the 
saliency of the visual scene. The spatial distribution of 
saliency is then examined, and only when the map contains 
convergent salient regions, it is retained. 
 
2.2.1. Scale contrast map 
 

 
 
Fig. 3. An example of calculating the scale contrast (SC) in the 
multi-scale image space: (a) original image, (b) Gaussian pyramids 
with scale levels σ=1, 2, 3, 4, (c) illustration of the circular raised 
cosine weighting function, (d)-(g) the scale contrast maps 
calculated at the four scales of (b), respectively [(e), (f) and (g) are 
resized by interpolation to the scale level σ=1]. 
 
To calculate the scale contrast map, let’s denote the 
luminance channel of an image of M×N (height × width) 
pixels as I (i, j) for i [1, M], j [1, N]. The luminance 
channel is then progressively low-pass filtered and sub-
sampled using dyadic Gaussian pyramids, with σ=[0,…,8] 
yielding 9 spatial scales [9]. The resolution of the image at 
scale level σ is 1/2σ times the original image resolution. To 
reduce the computational power, while sufficiently 
representing the fine and coarse scales, we use four scale 
levels (i.e. σ [1, 2, 3, 4]) in our model. The scale contrast 
(SC) is defined within an image patch superposed on each 
pixel location (i, j) as: 
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where  is the mean luminance of the local image patch 
 
 PpP II p Ip  (2) 

Ip is the pixel intensity at location p, and K is the total 
number of pixels in the image patch. For the weighting 
factor ωp a circular raised cosine weighting function [5] as 
illustrated in Figure 3(c) is adopted. Note that this function 
can be replaced by an alternative function without expected 
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change in performance. The size of the image patch is 
adapted to the scale size, taking into account the highlighted 
features in a specific scale (i.e. in our experiments, {1/5, 1/4, 
1/3, 1/2}×min(1/2σ×[M, N]) is used for the scale levels of 
σ 1, 2, 3, 4, respectively). The entire procedure is shown as 
an example in Figure 3, where the SC map clearly gives 
prominence to the outstanding features at the scale it is 
calculated for, e.g. the boom and ropes of the sailing boat 
are highlighted at the scale σ=1, while the body of the boat 
is highlighted at the scale σ=4 
 
2.2.2. Selecting saliency 
 
After calculating the SC maps at the different scales, they 
are linearly combined into a single conspicuity map, as 
illustrated in Figure 4(b). The combined map reveals a more 
comprehensive “object contrast” map, including features 
standing out in both coarse and fine scales. As discovered in 
[1], the spatial distribution of saliency affects its actual 
added value in image quality prediction. To include this 
aspect, we propose a simple method to automatically detect 
images with bit spread in saliency. To do so, the conspicuity 
map is divided into blocks of equal sizes (i.e. block size is 
1/20 of the map size as used in our experiments). A block 
that contains a pixel with its intensity above a certain 
threshold (i.e. 40% of the maximal intensity is used in our 
experiments) is considered as “covered”. If all blocks are 
“covered”, the conspicuity map is considered not converged, 
and therefore, is not used in the subsequent image quality 
prediction. More complex algorithms may be designed, but 
are outside the scope of this paper. In case the conspicuity 
map is retained, it is added to a center bias model to 
generate the saliency map (as already suggested in [10]). 
The whole procedure is shown in Figure 4.  
 

 
 
Fig. 4. An example of saliency generation: (a) original image, (b) 
conspicuity map of (a), (c) a model of center bias, (d) saliency map 
of (a), (e) original image without convergent salient features, (f) 
conspicuity map of (e), (g) average (i.e. no saliency) map of (e). 
 

3. EXPERIMENTAL RESULTS 
 
To validate the proposed model of visual saliency, we first 
evaluate how well the model can predict our NSS data of 
[1]. Then, we verify the added value of the model in image 
quality prediction. The data in [1] contain human saliency 
maps (HSM), obtained from 20 observers looking freely to 

29 source images of the LIVE database [11]. The correlation 
coefficient (i.e. ρ in the range [-1, 1]) between the 
subjectively measured HSM and the computational saliency 
map (CSM) is calculated. To make a fair comparison, the 
analysis of saliency convergence is not included here (i.e. 
the conspicuity map is always considered converged). Figure 
5 illustrates the ρ values of our proposed model for the 29 
images (the content and ordering of the images can be found 
in [11]). The averaged ρ value is 0.6. We visualize some 
examples of saliency maps in Figure 6; i.e. for the images 
with a ρ value around 0.6 and for the images with the highest 
and lowest ρ values. As can be seen for a ρ value of 0.6, the 
model captures most of the saliency measured with eye-
tracking data. Of course, there is still room to further 
improve the correspondence between the modeled and 
measured saliency, but most probably at the expense of its 
computational cost. For the purpose we have in mind here, 
however, it is more important to evaluate whether a ρ value 
of 0.6 is sufficient to replace modeled saliency for measured 
saliency in objective metrics for quality prediction.  

 

 
Fig. 5. Correlation coefficient (ρ) between the human saliency map 
(HSM) and the computational saliency map (CSM) over 29 images 
(the content and ordering of the images can be found in [11]). 
 

 
Fig. 6. Examples of images with representative ρ values achieved 
by our proposed model: (a) images with their ρ values around 0.6 
(i.e. the averaged ρ value achieved by our model), (b) image with 
the highest ρ value, and (c) image with the lowest ρ value.  

 
Thus, to investigate whether our model is sufficiently 

sound to serve as computational alternative for eye-tracking 
data, and consequently, can be used for real-time quality 
assessment, we repeat the experiment as described in [1]. As 
such, the saliency predicted by our model is added to the  
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Table 1. Correlation coefficients (i.e. CC, SROCC) of objective metrics calculated for the LIVE database [11]. 

 
PSNR and SSIM metrics to assess the image quality of the 
LIVE database [11]. In our experiments, four images 
(namely “bikes”, “buildings”, “paintedhouse”, and “stream” 
in [11]) are detected as not having convergent salient 
features, and thus, the average saliency map as illustrated in 
Figure 4 is applied. The metrics’ performance is quantified 
by the Pearson (CC) and Spearman (SROCC) correlation 
coefficients [1]. As illustrated in Table 1(a), adding our 
model to PSNR and SSIM consistently improves their 
performance for different image distortion types. The 
corresponding averaged correlation for the entire database is 
listed in Table 1(b). Experimental results show that the 
amount of gain in performance (i.e. the increase in 
correlation) achieved by adding our model to an objective 
metric is similar to what can be obtained by including eye-
tracking data.  
 

4. CONCLUSIONS 
 
In this paper, an efficient model of visual saliency for the 
use in objective image quality assessment is designed. 
Inspired by findings from eye-tracking studies, we built the 
saliency model based on the luminance component only, and 
simply calculated the object contrast over multi-scales. 
Moreover, the spatial distribution of the resulting saliency 
was analyzed to decide whether or not to incorporate it in 
image quality prediction. The proposed model is sufficiently 
consistent with eye-tracking data, and applying it to state-of-
the-art objective metrics indeed enhances their performance 
to the same extent as adding the “ground truth” saliency. As 
such, the proposed model is promising in terms of both 
computational efficiency and practical reliability for real-
time image quality assessment. 
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