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ABSTRACT 
A new block-based multi-metric fusion (BMMF) approach 
is proposed for perceptual image quality assessment. The 
proposed BMMF scheme automatically detects image 
content and distortion types in a block via machine learning, 
which is motivated by the observation that the performance 
of an image quality metric is highly influenced by these 
factors. Locally, image block content is classified into three 
types; namely, smooth, edge and texture. Image distortion is 
detected and grouped into five types. An appropriate image 
quality metric is adopted for each block by considering its 
content and distortion types, and then all block-based 
quality metrics are fused to result in one final score. 
Furthermore, a corrected version of BMMF is derived for a 
specific group of distortions based on image complexity 
analysis. The proposed BMMF scheme is tested on TID 
database with its Spearman Correlation equal to 0.9471, 
which outperforms today’s state-of-the-art image quality 
metrics. 

Index Terms— Image quality assessment, MMF, BMMF.

1. INTRODUCTION 

Perceptual image quality metrics play an important role in 
many visual applications, e.g., lossy compression of images 
and video, image denoising, watermarking, etc. The goal of 
objective image quality assessment (QA) is to automatically 
evaluate image and video quality that is consistent with 
human visual perception. In some applications, a reference 
image (or image sequence) is available in the evaluation of 
its counterpart under a negative influence of distortion. The 
derived metrics are called full-reference (FR) quality 
metrics. PSNR and MSE are two widely used objective 
quality metrics. However, they do not correlate with 
subjective human assessment very well. 

Research on objective QA metrics has been active in 
the last decade, and a large number of metrics have been 
proposed. To compare the performance of different QA 
metrics, the TID image database [1] was established. It 
consists of 25 reference images and 1700 distorted images. 
There are 17 distortion types which often appear in digital 
image processing applications. The performance analysis of 
several state-of-the-art image QA metrics was conducted in 
[2] for the whole TID with a particular subset of distortion 

types.  It  was  observed  in  [2]  that  no  single  QA  metric  can  
perform the best with respect to all possible image contents 
and distortion types. The Spearman Correlation of the well 
known metric, MS-SSIM [3], is about 0.85 for the whole 
TID database. Recently, several other objective QA metrics 
such as PSNR-H(M)A [4], sPHVS [5], IW-SSIM [6] have 
been developed. Their Spearman Correlations are around 
0.86 for the TID database. Up to now, the best single image 
QA metric for TID is FSIM [7], which has the Spearman 
Correlation equal to 0.88. 

A block-based multi-metric fusion (BMMF) approach 
is proposed to develop a new image QA metric in this work.
The BMMF metric automatically detects image content and 
distortion types in a block via machine learning and selects 
the most suitable QA metric accordingly. Finally, all block-
based quality metrics are fused to result in one final score. 
More details of the BMMF metric will be presented in Sec. 
2 and its performance evaluation is conducted in Sec. 3. 
Finally, concluding remarks are given in Sec. 4.

2. PROPOSED BMMF QA METRIC 

Since the Human Visual System (HVS) selects parts of 
visual contents for analysis and responds, image QA metrics 
are influenced by the content and distortion types of a local 
image region. Being motivated by this observation, we 
decompose images into blocks of a smaller size, classify 
them into three types (i.e. smooth, edge and texture), and 
select a suitable QA metric for each region accordingly. The 
block-diagram of the proposed BMMF metric is shown in 
Fig. 1. Each module is described in one of the following 
sections.  

Figure 1. The block-diagram of the proposed BMMF QA metric.
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2.1 Image Block Classification 

Image blocks in a reference image are classified into three 
types: smooth, edge and texture blocks. A smooth block is 
one without obvious intensity variation. An edge block 
contains two intensity levels with a narrow transition 
interval. A texture block contains a certain amount of 
intensity variations. Examples of smooth, edge and texture 
blocks of size 16x16 are given in Fig. 2, respectively.  

a) smooth                    b) edge                   c) texture 

Figure 2. An example of three block types 

There exist many block classification algorithms. Here, 
we adopt the Classi cation And Regression Trees (CART) 
supervised learning method to classify image blocks. The 
CART is a recursive partitioning method. It builds a directed 
decision tree (or a regression tree), where by convention the 
root node is displayed at the top, connected by successive 
(directional) links or branches to other nodes. Block features 
are extracted using two histograms: a) the gray level, and b) 
the first order derivative. The variances of these two 
histograms are calculated. Then, we get four variances in a 
block: 1) -variances of frequency counts in gray levels; 2) 

-variances of frequency counts in first order derivatives; 
3) -variances of all pixel values; 4) -variances of all 
first order derivative values. Table I gives four variances to 
each block in Fig. 2. We see clearly that these four variance 
values can be used to distinguish different block types well.  

Table I. Four variances for three blocks as shown in Fig. 2.  

Smooth Edge Texture 
586.1 104.1 1.6 
304.9 268.8 3.4 

7.5 4734.6 2375.9 
9.2 986.1 1176.2 

Two reference images from the TID database, which 
contain smooth, edge and textures areas obviously, are used 
to build the training data set. We took 600x2=1200 blocks 
of  size 16x16, tagged them with smooth, edge and texture 
blocks, respectively, and built the CART with proper 
threshold values associated with each decision node. 

2.2 Image Distortion Classification 

Image distortions in TID database were classified into five 
types as shown in Table II using the machine learning 
algorithm in [8]. Five features are calculated: 1) blockiness, 

2) average absolute difference between in-block image 
samples, 3) zero-crossing (ZC) rate, 4) average edge-spread 
and 5) average block variance in the image. For details, we 
refer to [8]. We follow the framework in [8] and classify 
image distortion types into five groups as given in Table II. 

Table II Distortion Types in TID and Grouping  

Type of distortion
Group I 1 Additive Gaussian noise 

2 Different  additive  noise  in  color components   
3 Spatially correlated noise 
4 Masked noise 
5 High frequency noise 
6 Impulse noise 

Group II 7 Quantization noise 
Group III 8 Gaussian blur 

9 Image denoising 
10 JPEG compression  
11 JPEG2000 compression 

Group IV 12 JPEG transmission errors 
13 JPEG2000 transmission errors 

Group V 14 Non eccentricity pattern noise 
15 Local blockwise distortions of  different intensity 
16 Mean shift (intensity shift) 
17 Contrast change 

2.3 BMMF 

As demonstrated in [2], although a single QA metric cannot 
perform well on all distortion types; some of them can 
perform well with respect to a distortion type in a specific 
image content. For example, the PSNR metric performs well 
on ‘Different additive noise in color components’ and 
‘Impulse noise’ although it is generally perceived as a non-
ideal metric. After analyzing the performance of different 
quality metrics, we choose some of them to calculate the 
quality  score  of  image blocks  as  shown in  Table  III,  where  
the first column and the first row indicate the distortion type 
and the block type, respectively. Note also that, since our 
metric is block-based, multi-scale and wavelet based metrics 
(e.g., MS-SSIM, VIF, VSNR) are excluded from our choice.  

Table III. Selected QA metrics for five distortion sets and three 
image block types 

Once we assign the quality score to each individual 
block based on the QA metric given in Table III. The next 
step  is  to  fuse  all  quality  scores  into  a  single  one  for  the  
whole image.  For image x with a distortion type i, we 
define its final BMMF score as ) = ),                (1)

where  is the index of distortion set,  is the image block 
type (say, 1-smooth, 2-edge, 3-texture),  and  are 

Smooth Edge Texture 
Group I PSNR-HVS PSNR-HVS-M PSNR-HVS
Group II FSIM FSIM PSNR-HVS 
Group III PSNR-HMA PSNR-HA FSIM 
Group IV PSNR-HVS FSIM FSIM 
Group V *MSE( ) *MSE( ) *MSE( )
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blocks in reference and distorted images, respectively,  is 
the selected quality metric for a distortion type and block 
type ,  is the mean of , and  is a weighting factor 
determined by MOS using a small training dataset.  

The proposed BMMF works well for distortion types I-
IV. However, it  does not work very well for distortion type 
V. To address this problem, we first examine Distortion 
Type V and then consider an enhanced BMMF solution as 
detailed in the next section. 

3. CORRECTED BMMF QA METRIC 

3.1 Analysis of Distortion Type V  

Most QA metrics fail in images of distortion type V as 
reported in [2]. Thus, it is worthwhile to examine this 
distortion type in depth. Noise may be produced in the 
process of image coding or watermarking in Distortion #14 
(non eccentricity pattern noise). Thus, the visibility of this 
type of noise is highly dependent on image content. That is, 
at the same distortion level, the distortion is less visible to 
HVS if the underlying image contains more textures. 
Distortions are caused by image acquisition, impainting or 
gamma correction in Distortion #15, #16 and #17. When 
images are captured by digital devices such as a camera, 
their quality can be influenced by a mean shift (or intensity 
shift) and/or contrast change due to different lighting 
conditions. This distortion is more obvious in homogenous 
regions.  

According to physiological and psychological study on 
HVS, human being responds to image differences with an 
unequal attention level. That is, the HVS selects part of 
visual signals for detailed analysis and then responds, which 
is referred to as the Visual Attention (VA) model [9]. As a 
result, image quality is influenced by its content structure. It 
may not affect human perceptual image assessment much if 
the distortion is not in the VA region, but it will have a 
negative impact on some full reference metrics such as 
PSNR and MSE.  

(a) Simple                    (b)  Normal               (c)   Complex 

Figure 3. Illustration of different image contents. 

3.2 Image Complexity and Corrected BMMF Metric 

Based  on  the  discussion  in  Sec.  3.1,  we  classify  image  
content into three different types using CART according to 
its structure complexity in this work; namely, simple, 
normal  and complex as  shown in  Fig.  3.  The  simple  image 
structure has simple background and a few foreground 
objects with clear object boundaries and little texture. The 
normal image structure contains a little bit more texture. The 

complex image has no dominant edges that can be used in 
segmentation but consists of multiple texture regions, such 
as creek, river banks, trees and mountains in the background 
as shown in Fig. 3(c). To differentiate image content types, 
we select two gradients  and  (horizontal and vertical) 
and a variance (frequency counts of image block types) as 
the discriminant features. 

A full reference image QA metric that accounts for 
peculiarities of human perception of contrast and mean 
brightness distortions was proposed in [4]. By following the 
framework in [4], we propose a modified version of PSNR-
HA, which takes into account the influence of non 
eccentricity pattern noise and intensity deviation distorted 
images below. First, we have 

, (2)= + ( ) ,                            (3)

where and  denote the degraded brightness and contrast 
in distorted image , respectively,  is the mean difference 
between original image and distorted image , and 
is a factor used to compensate possible contrast change and 
defined as = ( )( ) ,                               (4) 

and where  and are the mean values of  and ,
respectively. Then, we define the MSE measure of distorted 
image  as ( [ ] [ ] ) ]  (5) 

where M, N denote the image size, K = 1 [(M 7)(N 7)64]
is a normalization factor,  are DCT coefficients of 8x8 
image block in  for which the coordinates of its left upper 
corner are equal to  and ,  are the DCT coefficients 
of the corresponding block, and  is the matrix of correcting 
factors determined by the CSF and obtained by normalizing 
the quantization table in JPEG [10] and squaring the values. 
The distortion measure can be derived similarly. After 
some manipulations, we obtain: + 1, < 12, 1,   (6) 

3 + 4 , < 0  > | |0, , (7) 

= ),( ), ,   (8) 

where is the variance of , ( )  is the cumulative 
value of  from all edge image blocks, ( ) is 
the cumulative value of all smooth, edge and texture blocks, 

 is a positive constant when is simple and normal, and 
is a negative constant when  is complex, and 
K1,K2,K3,K4 are correction factors and tuned as suggested 
in [4]. Finally,  is the desired corrected QA metric 
calculated based on the complexity of .
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Table IV. Comparison of SROCC values of several image QA metrics on the TID database. 

4. EXPERIMENTAL RESULTS 

The proposed BMMF metric is validated on the TID [1] 
image database, which contains 25 reference images and 68 
distorted versions of each reference image so that there are 
1700 distorted images in total. There are 17 distortion types 
as  shown  in  Table  II.  Due  to  the  space  limitation,  we  only  
use the Spearman rank-order correlation coefficient 
(SROCC) between the objective QA metric and the Mean 
Opinion Score (MOS) for performance comparison. Several 
state-of-the-art image quality metrics are compared with the 
proposed BMMF metric. They include: FSIM [7], PSNR-
HA(-M) [4], IW-SSIM [6], MSSIM [3], SSIM [12], VIF 
[13], VSNR [14], PSNR-HVS(-M) [10], [11] and PSNR. 
The averaged results with respect to the five distortion types 
are shown in Table III.  

The  two best  results  are  shown in  bold  and their  ranks  
are marked in the right-up-corner. We see from the table 
that  proposed  BMMF  QA  metric  performs  the  best  in  all  
five distortion types. In additional, most image quality 
metrics fail for images in Group V. The proposed corrected 
BMMF metric has an SROCC equal to 0.9025. Overall, with 
respect to the whole TID database, the BMMF metric offers 
the best SROCC performance with an average of 0.9471, 
which outperforms the second best metric by a significant 
margin. 

5. CONCLUSION 

A new full reference block-based multi-metric fusion 
(BMMF) approach was proposed for perceptual image 
quality assessment. The BMMF scheme automatically 
detects image content and distortion types in a block via 
machine learning. A corrected version of BMMF was also 
derived based on image complexity analysis. The superior 
performance of the BMMF scheme was demonstrated with 
the TID database. 
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Group I Group II Group III Group IV Group V ALL
BMMF 0.95171 0.92541 0.95751 0.91391 0.90251 0.94711

FSIM 0.9045 0.8550 0.95142 0.8845 0.7053 0.88052

PSNR-HA 0.94202 0.8958 0.9300 0.8252 0.8007 0.8680
IW-SSIM 0.8721 0.8164 0.9361 0.8592 0.7652 0.8559
MS-SSIM 0.8559 0.8527 0.9361 0.8759 0.7279 0.8527

PSNR-HMA 0.9353 0.90562 0.9341 0.8224 0.82182 0.8460
SSIM 0.8687 0.8661 0.9387 0.8811 0.5095 0.8087
VIF 0.9162 0.7946 0.9243 0.88792 0.5310 0.7495

VSNR 0.8978 0.8260 0.9052 0.7711 0.5544 0.7046
PSNR-HVS 0.9402 0.8930 0.9287 0.8292 0.2755 0.5942

PSNR-HVS-M 0.9286 0.8985 0.9297 0.8214 0.2736 0.5594
PSNR 0.6583 0.8689 0.8823 0.7246 0.2483 0.5245
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