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ABSTRACT

This paper presents a perceptually optimized subspace estimation
method for missing texture reconstruction. The proposed method
calculates the optimal subspace of known patches within a target
image based on structural similarity (SSIM) index instead of cal-
culating mean square error (MSE)-based eigenspace. Furthermore,
from the obtained subspace, missing texture reconstruction whose
results maximize the SSIM index is performed. In this approach, the
non-convex maximization problem is reformulated as a quasi con-
vex problem, and the reconstruction of the missing textures becomes
feasible. Experimental results show that our method overcomes pre-
viously reported MSE-based reconstruction methods.

Index Terms— Image restoration, image texture analysis, inter-
polation, image quality assessment.

1. INTRODUCTION

Traditionally, many researchers have intensively studied missing tex-
ture reconstruction since it affords a number of fundamental appli-
cations. In recent works, Criminisi et al. proposed an exemplar-
based fill-in approach as a representative method in this research
field [1]. From a characteristic that the reconstruction of missing
areas is one of the inverse problem, several methods using low-
dimensional subspaces for deriving the inverse projection to estimate
missing intensities have been proposed. For example, Amano et
al. proposed an effective PCA-based method that estimated miss-
ing textures by back projection for lost pixels [2]. Furthermore,
sparse representation-based image reconstruction has recently been
studied. Mairal et al. proposed a representative work based on the
sparse-representation [3], and Xu et al. also presented an improved
exemplar-based method using the sparse representation [4].

It should be noted that in the previous works, they mostly try to
calculate subspaces such as eigenspaces and subspaces based on the
sparse representation, which minimize the mean square error (MSE).
Although the MSE is the most popular metric used as a quality mea-
sure, it has been reported that MSE optimal algorithms do not nec-
essarily produce images of high visual quality. Thus, the reconstruc-
tion using MSE-based subspaces tends not to be suitable. Recently,
the structural similarity (SSIM) index [5] has been proposed as a
representative measure in the field of image quality assessment. Fur-
thermore, it has been reported that the SSIM index is superior to the
MSE and its variants for measuring image qualities. Therefore, by
using the SSIM index, calculation of subspaces which enable suc-
cessful reconstruction of missing textures can be expected.
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Society for the Promotion of Science (JSPS).

In this paper, we present an SSIM-based optimal subspace es-
timation method for missing texture reconstruction. The proposed
method uses the SSIM index as a new criterion for estimating
the subspace to reconstruct missing areas within the target image.
Specifically, we adopt the following two approaches: 1) SSIM-
based calculation of optimal bases for known patches within the
target image and 2) Reconstruction of missing textures based on
a maximization problem of the SSIM index. Note that the first
approach provides the perceptually optimized subspace for the fol-
lowing SSIM-based reconstruction approach. Furthermore, the
second approach adopts a new scheme, and a non-convex maximiza-
tion problem for reconstructing missing textures is reformulated
as a quasi convex problem. Then we can derive the optimal solu-
tion based on the SSIM index, and successful reconstruction of the
missing textures is expected.

2. SSIM INDEX

The SSIM index was proposed as a similarity between two vectors x
and y (∈ Rn), and its simplified definition is shown as follows:

SSIM(x, y) =

(
2μxμy +C1

) (
2σx,y +C2

)
(
μ2

x + μ
2
y +C1

) (
σ2

x + σ
2
y +C2

) , (1)

where μx and μy are respectively the means of x and y, σ2
x and σ2

y are
respectively the variances of x and y. Furthermore, σx,y is the cross
covariance between x and y. The constants C1 and C2 are necessary
for avoiding instability when the denominators are very close to zero.
As shown in [5], the SSIM index is consistent with luminance and
contrast masking, and the correlation.

3. SSIM-BASED OPTIMAL SUBSPACE ESTIMATION FOR
IMAGE RECONSTRUCTION

In this section, we present an SSIM-based optimal subspace estima-
tion method for the missing texture reconstruction. In the proposed
method, a patch f (w × h pixels) including missing areas is clipped
from the target image, and its missing textures are estimated from
the other known areas. For the following explanations, we respec-
tively denote two areas whose intensities are known and unknown
within the target patch f as Ω̄ and Ω. Furthermore, we also define
vectors, whose elements are respectively intensities within f and Ω̄,
as x(∈ Rwh) and y(∈ RNΩ̄ ), where NΩ̄ is the number of pixels within
the area Ω̄.

First, the proposed method performs the SSIM-based optimal
subspace estimation (See 3.1). Furthermore, by using the obtained
subspace, we derive the representation model optimized for the tar-
get patch f in terms of the SSIM index to reconstruct the missing
area Ω (See 3.2).
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3.1. SSIM-Based Optimal Subspace Estimation

In our method, we first clip known patches fi (i = 1, 2, · · · , L) whose
size is w × h pixels from the target image in the same interval. For
the following explanation, two vectors xi (∈ Rwh) and yi (∈ RNΩ̄ ),
which respectively correspond to x and y, are defined for each patch
fi. From the clipped patches, we calculate an M-dimensional opti-
mal subspace based on the SSIM index, where M should be a much
smaller value than wh. Unfortunately, the bases of the subspace op-
timized in terms of the SSIM index do not become orthogonal, and
thus, the proposed method adopts the simplest algorithm which com-
putes the optimal bases one-by-one. In the rest of this subsection, the
details of t-th (t = 1, 2, · · · ,M) optimal basis calculation are shown.

In t-th iteration, i.e., t-th optimal basis calculation, we first define
the following vector approximating xi (i = 1, 2, · · · , L):

x(t)
i =

[
Ê(t−1) e(t)

] [a(t−1)
i

a(t)
i

]

= E(t)a(t)
i , (2)

where Ê(t−1) = [ê(1), ê(2), · · · , ê(t−1)] is a fixed wh×(t−1) matrix which
contains t− 1 bases previously calculated in t− 1 iterations. Further-
more, E(t) =

[
Ê(t−1) e(t)

]
, and a(t)

i =
[
a(t−1)

i

′
a(t)

i

]′ (∈ Rt) is a

coefficient vector for obtaining x(t)
i . Note that vector/matrix trans-

pose is defined by the superscript ′ in this paper. We estimate the
optimal basis ê(t) of e(t) which provides the optimal representation
performance for all known patches fi (i = 1, 2, · · · , L) based on the
SSIM index. The details are shown below.

The proposed method calculates the optimal basis ê(t) by the fol-
lowing equation:

{
ê(t), â(t)

}
= arg max

e(t) ,a(t)

L∑
i=1

SSIM(xi, x
(t)
i )

subject to ||e(t)|| = 1, (3)

where a(t) is a set of a(t)
1 , a

(t)
2 , · · · , a(t)

L , and SSIM(xi, x
(t)
i ) is defined as

follows:
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In the above equation, μxi and μx(t)
i

are respectively the means of xi

and x(t)
i , σ2

xi
and σ2

x(t)
i

are respectively the variances of xi and x(t)
i , and

σxi ,x
(t)
i

is the cross covariance between xi and x(t)
i . Note that from

Eqs. (2) and (4), we can see that the cost function in Eq. (3) is a
function of e(t) and a(t)

i (i = 1, 2, · · · , L). Therefore, the proposed
method calculates the optimal basis ê(t) and the optimal coefficient
vectors â(t)

i (i = 1, 2, · · · , L) by applying the constrained steepest as-
cend algorithm to Eq. (3). It is well known that the steepest ascend
algorithm cannot necessarily provide the globally optimal solution
in Eq. (3), but this algorithm can save the computation cost com-
pared to the algorithm shown in the following subsection. From this
reason, we utilize this scheme in the proposed method. By iterating
the above procedures M times, we can obtain the optimal M bases
Ê = [ê1, ê2, · · · , êM] based on the SSIM index.

3.2. Missing Area Reconstruction Algorithm

In this subsection, the reconstruction algorithm of the missing area
Ω within f is presented. The proposed method tries to estimate the

optimal linear combination

x̂ = Êâ (5)

of the unknown vector x of f , where

{x̂, â} = arg max
x,a

SSIM
(
x, Êa

)
subject to Σx = y, (6)

and Σ is a matrix extracting only the known intensities in Ω̄. In the
above equation,
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, (7)

and

μÊ =
1

wh
Ê′1, (8)

where 1 = [1, 1, · · · , 1]′ is a wh × 1 vector. Furthermore,

H = I − 1
wh

11′ (9)

is a wh × wh centering matrix, where I is the identity matrix.
Since Eq. (7) is a nonconvex function of x and a, we introduce

the calculation scheme shown in [6]. First, we note the first term in
Eq. (7) is a function only of 1

wh1′x (= ρ) and μÊ
′a (= ω). Thus, the

problem in Eq. (6) is rewritten as follows:

max
x,a

(
2x′HÊa + whC2

x′Hx + a′Ê′HÊa + whC2

)

subject to Σx = y,
1

wh
1′x = ρ,μÊ

′a = ω. (10)

Therefore, the overall problem is to find the highest SSIM index by
searching over range of ρ and ω. Furthermore, Eq. (10) is converted
into a quasi-convex optimization problem as follows:

max
x,a

(
2x′HÊa + whC2

x′Hx + a′Ê′HÊa + whC2

)

subject to Σx = y,
1

wh
1′x = ρ,μÊ
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⇔
min : τ
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⎡⎢⎢⎢⎢⎢⎢⎣ max :
(

2x′HÊa+whC2
x′Hx+a′Ê′HÊa+whC2

)
≤ τ
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wh1′x = ρ,μÊ

′a = ω

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⇔
min : τ

subject to[
min : [τ (x′Hx + a′K1a + whC2) − (x′K2a + whC2)] ≥ 0

subject to Σx = y, 1
wh1′x = ρ,μÊ

′a = ω

]
,

(11)

where

K1 = Ê′HÊ, (12)
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K2 = 2HÊ. (13)

In Eq. (11), τ becomes a true upper bound if[
maxx,a τ (x′Hx + a′K1a + whC2) − (x′K2a + whC2) ≥ 0

subject to Σx = y, 1
wh1′x = ρ,μÊ

′a = ω

]
(14)

has a non-negative value. The proposed method adopts the Lagrange
multiplier approach as follows:

L = τ (x′Hx + a′K1a + whC2) − (x′K2a + whC2)

+

NΩ̄∑
k=1

λk (vk
′x − yk) + η1

(
1

wh
1′x − ρ

)
+ η2

(
μÊ
′a − ω) ,

(15)

where vk (k = 1, 2, · · · ,NΩ̄) is a vector satisfying

Σ =
[
v1, v2, · · · , vNΩ̄

]′
, (16)

and yk (k = 1, 2, · · · ,NΩ̄) satisfies

y =
[
y1, y2, · · · , yNΩ̄

]′
. (17)

In Eq. (15), the optimal solutions satisfy ∇xL = 0wh, ∇aL = 0M ,
∇λk L = 0 (k = 1, 2, · · · ,NΩ̄), ∇η1 L = 0, ∇η2 L = 0, and the following
equations are obtained:

2τHx −K2a +
NΩ̄∑
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λkvk +
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wh

1 = 0wh, (18)

−K2
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1
wh
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μÊ
′a = ω, (22)

where Eq. (20) is equivalent to the constraint Σx = y in Eq. (6).
From Eqs. (18)–(22), the following problem can be obtained:
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′ 0NΩ̄
′ 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
a
λ
η1
η2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0wh

0M

y
ρ
ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (23)

where λ = [λ1, λ2, · · · , λNΩ̄
]′. Furthermore, Oheight×width and 0height

are respectively the zero matrix and the zero vector, and the subscript
(height and width) represents their size. Then, by solving the above
problem, the proposed method can calculate the optimal vectors â
and x̂. Note that τ can be obtained by using the standard bisection
procedures. Finally, from the obtained result x̂, the proposed method
outputs the estimated intensities in the missing area Ω.

As shown in the above procedures, we can reconstruct the miss-
ing areaΩwithin the target patch f . Therefore, the proposed method
clips patches including missing areas and performs their reconstruc-
tion to estimate all missing intensities. Specifically, we clip patches
in a raster scanning order from the upper-left of the target image,
and the missing areas are reconstructed if the target patches contain
missing intensities. If the clipping interval is smaller than the size of
the patches, multiple estimation results are obtained. In such cases,
the proposed method outputs the results maximizing Eq. (6) as the
final results.

4. EXPERIMENTAL RESULTS

In this section, we verify the performance of the proposed method by
some experiments. Figure 1(a) is a test texture image (480×360 pix-
els, 24-bit color levels) that includes text regions. Figure 1(b) shows
the results of reconstruction by the proposed method. For compari-
son, we performed the reconstruction using the conventional MSE-
based methods [1]–[4], and Fig. 1(c) shows the results obtained
based on the method proposed by Xu et al. [4]. We only show the
results of [4] which is the sate-of-the-art one in these conventional
methods due to the limitation of pages1. Furthermore, we show the
zoomed portions around the lower-right part of the images in Figs.
1 (d)–(f). From the obtained results, it can be seen that the pro-
posed method has achieved noticeable improvements compared to
the conventional method. Different experimental results are shown
in Figs. 2 and 3. Similar to Fig. 1, we can see that the proposed
method can reconstruct various kinds of textures more successfully
than the conventional one. Furthermore, the proposed method aver-
agely achieves 0.0162, 0.0244, 0.0221, and 0.0036 improvements of
the SSIM index over the conventional methods [1]–[4], respectively.
Therefore, high performance of the proposed method was verified
by the experiments.

The conventional methods generally use subspaces based on the
MSE criterion. As described above, the MSE optimal algorithms do
not necessarily produce images of high visual quality, and the recon-
struction results tend to suffer from some degradations such as blur-
ring. On the other hand, the proposed method adopts the SSIM index
for obtaining the subspace to reconstruct missing textures. Since the
SSIM index outperforms the MSE as a perceptual distortion mea-
sure, more successful reconstruction by our method is realized.

5. CONCLUSIONS

In this paper, we have presented a perceptually optimized subspace
estimation method for reconstructing missing textures. The pro-
posed method generates the optimal subspace from known patches
within the target image based on the SSIM index. Furthermore,
from the obtained subspace, the new algorithm, which maximizes
the SSIM index by converting its problem into a quasi convex one,
enables the reconstruction of missing textures. Consequently, im-
pressive improvement of the proposed method over the previously
reported methods can be confirmed.
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