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ABSTRACT

Edge-preserving smoothing is widely used in image processing and
bilateral filtering is one way to achieve it. Bilateral filter is a non-
linear combination of domain and range filters. Implementing the
classical bilateral filter is computationally intensive, owing to the
nonlinearity of the range filter. In the standard form, the domain and
range filters are Gaussian functions and the performance depends on
the choice of the filter parameters. Recently, a constant time imple-
mentation of the bilateral filter has been proposed based on raised-
cosine approximation to the Gaussian to facilitate fast implementa-
tion of the bilateral filter. We address the problem of determining
the optimal parameters for raised-cosine-based constant time imple-
mentation of the bilateral filter. To determine the optimal parame-
ters, we propose the use of Stein’s unbiased risk estimator (SURE).
The fast bilateral filter accelerates the search for optimal parameters
by faster optimization of the SURE cost. Experimental results show
that the SURE-optimal raised-cosine-based bilateral filter has nearly
the same performance as the SURE-optimal standard Gaussian bilat-
eral filter and the Oracle mean squared error (MSE)-based optimal
bilateral filter.

Index Terms— SURE, Bilateral filter, Raised-cosine approxi-
mation.

1. INTRODUCTION

Spatial (domain) filtering is a well known image denoising tech-
nique. Linearity and spatial invariance properties of the domain filter
enable fast Fourier transform (FFT)-based implementations of spa-
tial filtering. However, as a consequence of spatial invariance, such
filters do not preserve edges as averaging is performed over homoge-
neous regions as well as regions with discontinuities with the same
kernel. This drawback is alleviated by the edge-preserving bilateral
filter, first proposed by Tomasi and Manduchi [1]. Elad showed that
the bilateral filter can be derived as the solution to the optimal de-
noising problem in the Bayesian framework [2]. The bilateral filter
has found applications in image processing, computer graphics and
computer vision, for denoising [3], demosaicing [4] and optical-flow
estimation [5].

The bilateral filter ¢ is a combination of the domain filter and
range filter, that is,

Drm (Y, Ym) = W—m7 (Yk — Ym), (1)
wherein the domain filter wk—m is based on the geometric proximity
between the pixel of interest at spatial coordinate k and a nearby
pixel at coordinate m. It is symmetric, non-negative and assigns
coefficients that fall off with decreasing geometric proximity, thus,
effectively localizing the averaging operation to a neighbourhood A/
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of k. The range filter 7(yx — ym) measures the similarity between
the intensity of the pixel of interest yx and that of its neighbour ym. It
is symmetric, non-negative and assigns higher weights to pixels that
are photometrically similar to the pixel of interest than the dissimilar
ones. The general expression for the bilateral filter output is given
by

> WkemT(Yk — Ym)Ym
mGNk

> Wem”(Yk = Ym)
meNg
In (2), the denominator is a normalizing factor that preserves the
local mean of the image y.

The nonlinearity of » makes the implementation of (2) compu-
tationally intensive for real-time applications since FFT-based accel-
eration is not possible. To address this problem, Porikli proposed
a constant time O(1) implementation of the bilateral filter (for arbi-
trary spatial kernels) using polynomial range kernels [6]. Yang et
al. [7] proposed an O(1) algorithm for arbitrary range and spatial
kernels by extending the bilateral filtering method of Durand et al.
[8]. Their algorithm is based on a piecewise-linear approximation of
the bilateral filter obtained by quantizing the range kernel. Recently,
Chaudhury et al. [9] have proposed a new implementation of the
bilateral filter in constant time by employing a raised-cosine range
kernel. The motivation behind using the family of raised-cosines
given in (3) is that, in addition to qualifying as valid range kernels,
they also closely approximate the Gaussian function [9]:

(@)

Tk =

L

r(Yk — Ym) = cos(piﬁ(yk—ym)) . 3)

The raised-cosine kernel is non-negative when its argument takes
values between —7/2 and 7/2. In (3), the normalizing constant
~ constrains the argument of the raised-cosine between —7 /2 and
/2. It is given by v = 7/2T, where [0,T7] is the dynamic range
of the image y. The parameters L and p of the raised-cosine depend
on the standard deviation o, of the Gaussian to be approximated. p
is given by p = yo,.. If o, > v~ 2, a large value is chosen for I,
otherwise, L = p~2.

To optimally smooth an image in the presence of noise using
the fast bilateral filter, it becomes necessary to optimally choose the
parameters as well, an aspect that is addressed in this paper. Peng
and Rao [10] proposed a risk minimization approach using SURE
for standard Gaussian bilateral filtering. We propose SURE to com-
pute the optimal parameters of the fast bilateral filter in [9] in con-
stant time and compare the performance of SURE-optimal fast bilat-
eral filter with that of Oracle MSE-based optimal bilateral filter and
SURE-optimal Gaussian bilateral filter.

The paper is organized as follows. We provide the problem state-
ment in Section 2. In Section 3, we provide the SURE background
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and the SURE calculations for the standard bilateral filter, the Gaus-
sian bilateral filter and the raised-cosine bilateral filter. To validate
the accuracy of SURE derived for the fast bilateral filter and its close-
ness to the MSE, we present our experimental results in Section 4.
Concluding remarks are given in Section 5.

2. PROBLEM FORMULATION

We consider a digital image x (vector representation of an image)
corrupted by additive white Gaussian noise b of zero-mean and o21
covariance matrix. The noisy image y is given by y=x-+b. We
would like to obtain a denoised image X that is a close estimate of
the original image. The bilateral filter is chosen as the denoising
function. The MSE is used to quantify the closeness of the bilaterally
filtered image to the ground truth. The MSE is defined as
MSE(S) = £{]1% — x*} = %~ I,

where N denotes the total number of pixels in the image x. To ob-
tain the best bilaterally filtered output, we have to find the optimal
bilateral filter. This can be accomplished by computing the denoised
output for various parameters of the bilateral filter and selecting the
parameter that minimizes the MSE. In practical cases, the Oracle
MSE cannot be computed as we do not have access to the original
image X. SURE is an unbiased estimate of the MSE that depends on
the noisy image. Therefore, we propose the use of SURE to obtain
the optimal parameters of the bilateral filter.

3. COMPUTING THE OPTIMAL PARAMETERS OF THE
BILATERAL FILTER USING SURE

3.1. Theoretical background for SURE

We recall the following multidimensional version of the Stein’s
lemma [11, 12] to replace the MSE by an unbiased estimate that
depends on the noisy image y.

vk, under additive white Gaussian noise assumption, the expressions
%"x and 7'y — % divy (%) have the same expectation.
By applying Lemma 1 to the expression of MSE, the following
expression for SURE is obtained [12]:
N 1. 20% .
SURE(X) = 1% — y[|” + - divy(%) — 0. @
SURE is an unbiased estimate of the MSE, and therefore, the opti-

mal parameters in the minimum MSE sense can be approximated by
minimizing SURE.

3.2. SURE for the general bilateral filter

In the case of bilateral filtering, the term % ||x —y||? in (4) represents
the average squared error between the bilateral filter output X and the
noisy image y. The divergence term divy(X) is given by

divy(%) = Y iy 5)

kez Py

where Z represents the whole range of pixel coordinates of the im-
age. The differential of the bilateral filter output with respect to the
noisy image is given by

0T 1 Ok.m y Ym
Tk ( 3 Mym + brac(ie )

an = (2
i Y 3¢km0yk7ym))7 ©)
mE/\/k yk
where Wi = Z Okm (Y, ym) and ok k(yk, yx) = 1.
mE/\/k

SURE for the general bilateral filter can be computed by substituting
(2) and (5) in (4).

. 1.
SURE(%) = —[I% — ¥l — o+
1 8 m s Ym A 0 m y Yym
ZW $ czﬁka(yky) w1k S ¢k,a(yky)
keT Kk meN Y meNg Yk

3.3. SURE for the Gaussian bilateral filter

The classical Gaussian bilateral filter employs Gaussian range and
domain kernels. It is given by

—||k — m|?
Prm (Y, Ym ) =exp< ” 5 H )exp(
207

_ _ 2

2072

Taking the derivative of (7) with respect to yx, we get that

a¢k,m(yk,ym) _ Ym — Yk
o ¢k,m(yk,ym)< o2 ) (8)

Using (5), (6), and (8), we can express the divergence term as
Xj)\/ Prm (Y Ym ) Yim L e
oAy meNg Tk
divy(%) = e T s O

keZ

On substituting (9) in (4) , we get that

. X 1
SURE(X) = —|x—y|*>-0¢° +— e
kez K
) > Gkm(Yk, Ym)Yim
+ 20 Z meNg 7£2
No2 Wi ¢
keZ

Finding the SURE-optimal Gaussian bilateral filter can be accom-
plished by minimizing SURE over several values of the parame-
ters oq and o,. Computation of SURE involves computing X and
divy(X). X and divy(X) cannot be computed in constant time due to
the non-linearity of the Gaussian range kernel, thus, making the pro-
cess of finding the optimal Gaussian bilateral filter computationally
intensive.

3.4. SURE for the bilateral filter with Gaussian domain kernel
and raised-cosine range kernel

Writing cos(0) = (ejg + e’je) /2 and applying the binomial theo-
rem, the raised-cosine kernel in (3) is expressed as

r(Yk — Ym) ZTL( )exp (pi%(?l*L)(ykfym))

(10)
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_ _ 2

The domain filter used in [9] iS wk—m = exp (M)
04

(1D

The bilateral filter output is obtained by substituting (10) and (11) in

(2), that is,

Tk

; (D))

5 (D) (1)

=0

(12)

where di (1)
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he(l) =

a(l) =

In (12), gk(1) and hx(l) are obtained by filtering g (1) and hx(1),
respectively, with a Gaussian kernel of mean zero and variance o7.
An O(1) algorithm is used to compute the filtered outputs gk (1) and
R (). In addition to the O(1) complexity, the 2L different filtered
outputs in (12) can be computed in parallel to further accelerate the
speed of computation of the bilaterally filtered image.

From (1), (10), and (11), the derivative of ¢ with respect to y is
written as

k,m\ Yk, Ym Y
——F—————" = Wk—m cx(l) ex ——— (2l —-L m |,
Oy * 1=0 KO e ( p\FL( & >

where ax(l) = L2 (21 — L)d(). (13)

Using (5) and (6), the divergence term is computed as

L L _
. > a(Dae(l) + 1 — 2w 3o e(l)hu(l)
ey Ok =0 =0
divy(x) = B

kez OYk

™

kez di (1) hx (1)

(14)
On substituting (14) in (4), we obtain the expression for SURE as

SURE(R) = [%—yl* ~ o

20_2 lzf:() Ck(l)gk(l)+1 — Tk Ck(l)ilk(l)
TN LT P
ket > di(D)hu(1)

=0

It~

(15)

The computation of SURE involves computing the bilateral filter
output x and the divergence term divy(X). In [9], it has been proven
that the bilateral filter output X (12) is a constant time O(1) imple-
mentation. From (14), we see that computing divy(X) involves per-
forming linear convolution on pointwise transforms g (1) and hx (1)
with the Gaussian domain kernel. An O(1) algorithm can be used
to compute the filtered outputs gk (1) and hx(1). Further, the 2L dif-
ferent convolution outputs in (15) can be computed in parallel to
accelerate the speed of computation of SURE. A constant time O(1)
implementation of (15) is thus possible.
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Fig. 1: (in color, in electronic version) Comparison of the MSE and
SURE plots for Lenna image: (a) and (b) correspond to the fast bi-
lateral filter, whereas (c) and (d) correspond to the Gaussian bilateral
filter. SURE in (b) and (d) closely approximates the MSE in (a)
and (c), respectively. Also, SURE for the fast bilateral filter (b) and
SURE for the Gaussian bilateral filter (d) match closely.

4. EXPERIMENTS

The main objective of our experiments is to examine if the SURE
follows the MSE closely for the fast and Gaussian bilateral filters
and to observe how closely SURE for the fast bilateral filter approx-
imates that of the Gaussian bilateral filter. We choose a grayscale
Lenna image of size 512 x 512. A noisy realization of the image
is obtained by adding zero-mean white Gaussian noise of standard
deviation o = 14.34 to obtain a peak signal to noise ratio (PSNR)
of 25 dB. The image was denoised using the fast and Gaussian bi-
lateral filters for different parameter settings. In each case, the MSE
and SURE were computed. The results are shown in Figure 1. We
observe that the SURE approximates the MSE accurately for the
fast as well as the Gaussian bilateral filter. The cost functions seem
to be well behaved to enable parameter search using optimization
techniques. We have used gradient descent technique to compute
the optimal parameters.

The fast bilateral filter is parameterized by three parameters
namely o4, p, and L. In our experiments, we observed that restrict-
ing the search for o, such that o, < 2 gave satisfactory results
and from [9], we have p = % Thus, the raised-cosine kernel
used to approximate the Gaussian range kernel can be effectively
controlled by the parameter L alone. As a result, the fast bilateral
filter is parameterized by o4 and L. The Oracle MSE and SURE
were computed over the parameters L and o4 for the fast bilateral
filter. The parameter L was varied from 8 to 26 in steps of 1 and o4
from 0.5 to 2.5 in steps of 0.125. The optimal parameters for MSE
and SURE turned out to be the same: L = 12 and o4 = 1.25. We
show in Figure 2, the original Lenna image, a noisy image of PSNR
19 dB and the image denoised using the SURE-optimal Gaussian
and fast bilateral filters. In Figure 3, a noisy Cameraman image of
PSNR 22.03 dB and the SURE-optimal fast and Gaussian filtered
images are shown. We infer that the SURE-optimal Gaussian and
raised-cosine bilateral filters have nearly the same performance since
the PSNR values of the filtered images in Figure 2 and Figure 3 are
close enough.
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Fig. 2: (a) Original image, (b) Noisy image (PSNR 19 dB), (c) Denoised image obtained with SURE-optimal Gaussian bilateral filter (PSNR
28.98 dB), (d) Denoised image obtained with SURE-optimal fast bilateral filter (PSNR 28.80 dB), (e) (Color online) Comparison of Oracle
MSE and SURE for fast bilateral filter and Gaussian bilateral filter using optimal parameter settings. The y-axis in (e) is in linear scale.

(b)
Fig. 3: (a) Original image, (b) Noisy image (PSNR 22.03 dB), (c) Denoised image obtained with SURE-optimal Gaussian bilateral filter

(PSNR 30.83 dB), (d) Denoised image obtained with SURE-optimal fast bilateral filter (PSNR 30.66 dB), (e) (Color online) Comparison of
Oracle MSE and SURE for fast bilateral filter and Gaussian bilateral filter using optimal parameter settings. The y-axis in (e) is in linear scale.

We next vary the PSNR and compare the optimal Oracle MSE
versus the optimum provided by SURE for both Gaussian and raised-
cosine bilateral filters. The results are illustrated in Figure 2(e) and
Figure 3(e). We observe that the optimum values obtained by mini-
mizing SURE agree well with those obtained by minimizing Oracle
MSE for a wide range of PSNR values.

5. CONCLUSION

We have proposed a technique for choosing the optimal parame-
ters for raised-cosine-based fast bilateral filtering by minimizing the
SURE cost. SURE being an unbiased estimate of the MSE, the pa-
rameters that minimize SURE have been found to be nearly optimal
in the minimum MSE sense. We have derived SURE expressions for
the fast bilateral filter and verified that SURE for the fast bilateral
filter closely approximates SURE for the standard Gaussian bilateral
filter. We experimentally validated that the derived SURE and the
Oracle MSE have local minima for the same parameters of the fast
bilateral filter. Optimal parameter estimation by the proposed SURE
technique turned out to be fast as well, owing to the constant time
implementation of the bilateral filter [9] and the divergence term.
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