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ABSTRACT

The choice of threshold in wavelet based image denoising is
very critical. The universal threshold is a global threshold
utilized for denoising the wavelet coefficients. An effective
approach for the estimation of universal threshold based on
spatial context modeling of the wavelet coefficients has been
proposed. Spatial context modeling involves determination of
the correlated pixels within a local neighborhood of the pixel
to be denoised. Thus the threshold determination depends on
the pixel characteristics and not on the size of the image to
be denoised. The spatial context information of the wavelet
coefficients are computed using the range filter employed in
the formation of bilateral filter. Experiments on several Gaus-
sian noise corrupted images show that the proposed method
outperforms other thresholding methods such as VisuShrink,
SureShrink and BayesShrink.

Index Terms— Discrete wavelet transform, Undecimated
wavelet transform, Bilateral filtering, Spatial context model-
ing, Adaptive VisuShrink.

1. INTRODUCTION

Noise removal is the most common and important preprocess-
ing step in image processing applications. The main objective
of denoising is to recover the best estimate of the original im-
age from its noisy version. The denoising of a natural image
corrupted by Gaussian noise is an abiding problem in signal
processing. In this paper, we will deal with spatial context
modeling and its application to image denoising. Wavelet do-
main image denoising methods are most popular among the
effective denoising procedures. Denoising by wavelet thresh-
olding is a three step process consisting of a linear forward
wavelet transform, a non-linear shrinkage denoising and a
linear inverse wavelet transform. Thresholding is a nonlin-
ear technique, yet it is very simple because it operates on one
wavelet coefficient at a time.

The main advantage of the wavelet thresholding schemes
is the decorrelating property of the wavelet transform which
helps in distinguishing the noisy coefficients from the sig-
nal coefficients. The image in wavelet domain is decom-
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posed into approximation and detail subbands at various
scales. The detail coefficients are processed with soft [1] or
hard thresholding to estimate the signal components. Var-
ious threshold selection strategies have been proposed for
effective denoising. The customary methods among them
are VisuShrink [2], SureShrink [3], BayesShrink [4] and
NeighShrink [5]. VisuShrink uses the well known univer-
sal threshold. SureShrink and BayesShrink utilize subband
adaptive threshold hence yield better performance compared
to VisuShrink. The universal threshold (\) proposed by
Donoho and Johnstone [2], exists as the crux for most of the
wavelet thresholding schemes.

In determining the threshold there is always a trade-off
between the closeness of fit and smoothness. A smaller
threshold will yield a result closer to the input image, but will
still contain some noise. Though a larger threshold yields
a smoother image, yet leads to loss of singularities causing
blur and artifacts. This persuaded us to develop a subband
adaptive threshold determination method based on the spatial
context modeling of the wavelet coefficients.

Discrete wavelet transform (DWT) is the most widely
used wavelet transform algorithm for image compression. In
case of image denoising, the DWT based approach leads to
various artifacts mainly due to the loss of translation invari-
ance property [6]. This led to the use of a new translation
invariant or undecimated wavelet transform [7] approach for
image denoising. There are many variations of undecimated
wavelet transform used for denoising applications. Recently
we proposed an undecimated wavelet transform (UDWT)
based approach for denoising magnetic resonance images [8].
The proposed UDWT approach performs efficiently in com-
parison to DWT and stationary wavelet transform (SWT)
based approaches. In this work, we will be using the UDWT
for denoising natural images.

Spatial context modeling involves the estimation of the
wavelet coefficient values based on their neighboring coef-
ficients [9]. Context modeling allows us to group pixels of
similar nature within a larger neighborhood region. In this
work we have estimated the relationship among the neigh-
boring coefficients using the range parameter of the bilateral
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filter [10]. This helps to determine the number of similar co-
efficients to the coefficient to be denoised and thus assists in
estimating the threshold for denoising. The proposed method
is evaluated using root mean square error (RMSE) and struc-
tural similarity index (SSIM) [11] as quality metrics.

(b) Noisy

(s

(e) BayesShrink

(f) Adaptive VisuShrink

Fig. 1: Ilustration of image denoising results for Girl image (o, =
0.03).

2. PROPOSED METHOD

2.1. VisuShrink

VisuShrink method is based on the soft shrinkage rule us-
ing universal threshold (\) proposed by Donoho and John-
stone [2]. Regardless of the shrinkage function the threshold

is estimated by,
A=op,v/2log N (D)

where o, is the estimated noise variance and /N denotes the
data length. In order to estimate A we need to know the noise

variance o, a priori. o,, value is estimated using the formula
used in [2],

 MAD|Dy|
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where M AD is the median absolute deviation and D; rep-
resents the detail coefficients of the finest level of decom-
position. The A value estimated by (1), is data size depen-
dent (V). The proportionality of the threshold to N assumes
that, the smoothness of the signal is large if there are more
number of samples. It implies that the data is assumed to
be sufficiently smooth with in its range and is optimum in
mean square error sense as N — oo. Therefore, the universal
threshold aims towards adapting to the smoothness of the data
rather than the closeness of fit. The threshold selection holds
good for smooth regions and strong edge structures in the im-
age. The small regions and weak edge structures refutes the
asymptotic assumption and so, the threshold remains too high
to pass these coefficients this leads to more visually smooth
result [12] .

Table 1: Comparison of RMSE and SSIM values obtained for de-
noising different test images using various thresholding schemes.

Results for gray scale images

Barbara
On VisuShrink SureShrink BayesShrink Adaptive VisuShrink
RMSE  SSIM RMSE  SSIM RMSE  SSIM RMSE SSIM
0.01 [ 0.0222 | 0.9332 | 0.0111 | 0.9536 | 0.0204 | 0.9491 | 0.0104 | 0.9647
0.03 | 0.0422 | 0.8318 | 0.0273 | 0.8938 | 0.0266 | 0.9019 | 0.0266 | 0.9037
0.05 | 0.0527 | 0.7631 | 0.0376 | 0.8222 | 0.0375 | 0.8293 | 0.0370 | 0.8367
0.07 | 0.0605 | 0.7118 | 0.0478 | 0.7645 | 0.047 | 0.7655 | 0.0467 | 0.7689
0.1 | 0.0667 | 0.6522 | 0.0623 | 0.6789 | 0.0601 | 0.6818 | 0.0559 | 0.6933
Cameraman
On VisuShrink SureShrink BayesShrink Adaptive VisuShrink
RMSE SSIM | RMSE SSIM | RMSE SSIM | RMSE SSIM
0.01 | 0.0188 | 0.9408 | 0.0087 | 0.9607 | 0.0125 | 0.9551 | 0.0115 | 0.9684
0.03 | 0.0352 | 0.8643 | 0.024 | 0.895 | 0.0214 | 0.9012 | 0.0204 | 0.9064
0.05| 0.044 |0.8128 | 0.0338 | 0.8381 | 0.0316 | 0.8396 | 0.0305 | 0.8444
0.07 | 0.0525 | 0.7597 | 0.0435 | 0.7814 | 0.0418 | 0.7841 | 0.0400 | 0.7880
0.1 ] 0.0596 | 0.6647 | 0.0554 | 0.6875 | 0.0513 | 0.6959 | 0.0493 | 0.6975
Girl
On VisuShrink SureShrink BayesShrink Adaptive VisuShrink
RMSE SSIM | RMSE SSIM | RMSE SSIM | RMSE SSIM
0.01 | 0.0224 | 0.9432 | 0.0108 | 0.9688 | 0.0204 | 0.9561 | 0.0129 | 0.9677
0.03 | 0.0286 | 0.8946 | 0.0233 | 0.9049 | 0.0227 | 0.9085 | 0.0224 | 0.9107
0.05 | 0.0347 | 0.8402 | 0.0331 | 0.8504 | 0.0316 | 0.8539 | 0.0291 | 0.8565
0.07 | 0.0427 | 0.7955 | 0.0399 | 0.8076 | 0.0389 | 0.8079 | 0.0338 | 0.8110
0.1 [0.0491|0.7282 | 0.0449 | 0.7434 | 0.0443 | 0.7521 [ 0.0420 | 0.7626
Pepper
On VisuShrink SureShrink BayesShrink Adaptive VisuShrink
RMSE SSIM | RMSE SSIM | RMSE SSIM | RMSE SSIM
0.01 | 0.0187 | 0.9231 | 0.0135 | 0.9675 | 0.0150 | 0.9708 | 0.0138 | 0.9737
0.03 | 0.0244 | 0.8430 | 0.0201 | 0.8688 | 0.0198 | 0.8695 | 0.0194 | 0.8740
0.05 | 0.0301 | 0.8099 | 0.0276 | 0.8194 | 0.0270 | 0.8266 | 0.0262 | 0.8305
0.07 | 0.0355 | 0.7625 | 0.0332 | 0.7747 | 0.0327 | 0.7763 | 0.0316 | 0.7883
0.1 ] 0.0424 | 0.7040 | 0.0414 | 0.7205 | 0.0398 | 0.7231 | 0.0394 | 0.7343
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Fig. 2: Results of experiments performed on the Girl image for various noise levels.

2.2. Adaptive VisuShrink

In order to reduce the smoothness and to preserve the weak
edges we propose a method to vary the universal threshold
based on the spatial context of a pixel to provide better denois-
ing. The spatial context is measured by finding the number of
pixels correlated within the local neighborhood of a scaling
coefficient, whose corresponding wavelet coefficient is to be
denoised. The correlation is computed using the range kernel
defined in bilateral filtering method [10].

Assume i € {z —d,..x +d}andj € {y —d,...y +d},
then for a coefficient w(x,y) in the approximation band its
neighbors w(i, j) with-in a window of size (2d+1) x (2d+1)
are obtained. The radiometric similarity between these coef-
ficients are computed using

—lw(@,y) —w(i,j)|

ws (1,7) =e 212 3)

where £ is the smoothing parameter and is proportional to the
noise variance o,,. Since, in our approach we use UDWT the
approximation and detailed coefficients are of same size in all
the levels of decomposition. Hence, estimating the similarity
among the pixels from the coarsest level approximation coef-
ficients can be used in their corresponding detail coefficients.

The spatial context S for the coefficient at (, y) is defined
as,

S, y) ={# (i,4) s ws (1,5) > n} )

where # denotes the cardinality and 7 is the limiting factor
that specifies the maximum permissible value of the radiomet-
ric weight for coefficient selection. Therefore, the universal
threshold for each coefficient is modified as,

Azy = On/210g Syy 5)

The threshold defined in Eq. 5 is the adaptive universal
threshold and soft thresholding of wavelet coefficients based
on this is defined as the adaptive VisuShrink.

(a) Original

(d) SureShrink

(e) BayesShrink

(f) Adaptrive VisuShrink

Fig. 3: Illustration of image denoising results for barbara image
(on = 0.07).
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3. EXPERIMENTAL RESULTS AND DISCUSSION
The performance of the proposed method is verified by con-

ducting experiments on the standard test images. The ex-
periments were performed on images corrupted with various
levels of Gaussian noise. The noisy image is subjected to 3
level decomposition with Haar wavelets in UDWT and then
the threshold determined using Eq. 5. The optimal choice
of neighborhood size used to determine the correlated neigh-
bors is obtained empirically as 21 x 21. The denoising result
obtained for girl image with noise variance (o, = 0.03) is
given in Fig. 1. The image result given in Fig. 1 proves the
creditability of the proposed method in comparison with Vis-
uShrink, BayesShrink and SureShrink.

Fig. 2 gives the plot for RMSE and SSIM values for var-
ious noise levels of Girl image given in Fig. 1(a). The pro-
posed adaptive VisuShrink based thresholding method yields
the least RMSE values and best SSIM values for various noise
levels in comparison to the other methods. The denoising re-
sults for Barbara image given in Fig. 3 also proves the better
performance of our method in comparison to other thresh-
olding techniques. Table I gives the RMSE and SSIM val-
ues obtained for different test images for various noise lev-
els. From the values in Table I we can infer that the proposed
method produces a better result in comparison to other uni-
versal threshold based thresholding methods.

The proposed adaptive VisuShrink method involves more
computations in comparison to the existing VisuShrink tech-
nique. But, in terms of visual perception and quality metrics
it performs well. The small structures and the weak edges are
well preserved in the denoised images. This technique can
be of huge usage in domains where accuracy is more impor-
tant than speed. The important advantage of this approach is
its simplicity. The extent of smoothing in adaptive VisuShrink
can be easily controlled by varying the neighborhood size and
the limiting factor 7.

4. CONCLUSION

In this paper, we propose adaptive VisuShrink as an improve-
ment to the VisuShrink approach. Spatial context modeling of
wavelet coefficients using the radiometric distance measure
in bilateral filter helps in determining the adaptive universal
threshold. The estimated threshold depends on the neighbor-
ing pixel characteristics and not on the size of the image as in
universal threshold. This helps in getting a smoother image
with edges being preserved. Experimental results confirm the
validity of the proposed adaptive VisuShrink technique over
the existing wavelet based shrinkage rules.
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