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ABSTRACT

This article is devoted to a new method for removing texture

in images using a smoothing rotating filter is presented. The

novelty of this approach resides in the association of a de-

scriptor able to classify a pixel as a texture pixel, a homoge-

nous region pixel or an edge pixel with an anisotropic edge

detector which defines two directions used in anisotropic dif-

fusion. This anisotropic diffusion controls accurately the dif-

fusion near edge and corner points and diffuses isotropically

inside textured regions. Our results applied on a real image

and a comparison with anisotropic diffusion methods show

that our model is able to remove efficiently the texture of re-

gions while preserving edges.

Index Terms— anisotropic filter, anisotropic diffusion.

1. INTRODUCTION

Texture removal is fundamental for image segmentation [1]

[2] [3] or cartoon generation [4]. Filtering techniques are not

adapted in the presence of strong texture [5] [6].

In [4], authors have developed an approach for removing

textures and preserving edges. Indeed, the algorithm deter-

mines if a pixel belongs to a textured region via a local total

variation of the image around this point. If the pixel belongs

to a textured region, the local total variation is strong. This

scheme depends of the scale parameter: the standard devi-

ation of the Gaussian σ convolved with the original image.

However, a small parameter σ will keep strong texture and a

large parameter will remove small objects and blur edges.

In image restoration, Partial Differential Equation (PDE)

are often used to regularize images where image boundaries

control a diffusion process. On homogenous regions, the dif-

fusion is isotropic, on the contrary, at edge points, diffusion is

tuned by the gradient magnitude in the contours directions or

is inhibited [7]. In the diffusion scheme of Perona-Malik [8],

control is done with finite differences so that many contours

of small objects or small structures are preserved. The Mean
Curvature motion method (MCM ) consists to diffuse only

in the contour direction [9], even in homogeneous regions. In

some diffusion approaches, Gaussian filtering is used for gra-

dient estimation, so the control of the diffusion is more robust

to noise [7] [10] [11] [12]. Nevertheless, these methods are

often used to enhance small structures but not to restore im-

ages containing high noise, so they are able to enhance texture

but not to remove it preserving precisely edges.

In this paper, we combine two techniques issued from our

previous works [3] [13]. First we describe the rotating fil-

ter able to detect textures. Then, we present an anisotropic

edge detector which defines two contour directions for an

edge crossing a pixel. Finally, we introduce a method for

anisotropic diffusion which controls accurately the diffusion

near edge and corner points and diffuses isotropically inside

the textured regions. In particular, our detector provides two

different directions on edges or corners, these informations

enable an anisotropic diffusion in these directions.

2. TEXTURE DETECTION

In order to detect if a pixel belongs to a texture region, a

homogeneous region or an edge, we use a smoothing rotat-

ing filter and analyze the obtained signal. For each pixel of

the original image, we use a rotating half smoothing filter to

build a signal s which is a function of a rotation angle θ and

the underlying signal. Smoothing with rotating filters means

that the image is smoothed with a bank of rotated anisotropic

Gaussian half kernels:

G(μ,λ)(x, y, θ) = C · Iθ ∗H (−y) · e−
(

x2

2λ2 + y2

2μ2

)
(1)

where Iθ corresponds to a rotated image1 of orientation θ,

C is a normalization coefficient, (x, y) are pixel coordinates,

and (μ, λ) the standard-deviations of the Gaussian filter. As

we need only the causal part of the filter, we simply “cut”

the smoothing kernel by the middle, this operation corre-

sponds to the Heaviside function H and the implementation

is quite straightforward. The application of the rotating filter

at one point of a gray level image in a 360 scan, provides

to each pixel a characterizing signal s(θ) which is a single

function of the orientation angle θ. From these pixel signals,

we now extract the descriptors that will discriminate edges

and regions.

For all pixels lying of a pixel in a homogeneous region,

s(θ) will be constant. On the contrary, in a textured region,

1as in [3], the image is oriented instead of the filter because it increases

the algorithmic complexity and allows to use a recursive Gaussian filter [2].
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s(θ) will be stochastic. If a pixel lies at the border between

several different homogenous regions, s(θ) will contain sev-

eral flat areas. If the pixel lies between a homogenous region

and a textured region, s(θ) will contain only one flat area.

However, if the texture region is not too accentuated, s(θ) will

be only a flat signal because of the smoothing filter, and the re-

gion will be considered as a homogenous region. This enables

to classify a pixel situated between two textured regions [13].

The main idea for analyzing a 360 scan signal is to de-

tect significant flat areas, which correspond to homogeneous

regions of the image. After smoothing, the derivative sθ(θ)
is calculated and flat areas are detected as intervals. We con-

sider that we detect a flat area when the largest angular sector

is between 30◦ and 360◦.

The texture suppression method consists on the one hand

to diffuse anisotropically at edge, corner points and points be-

tween two textured regions so as to preserve borders between

regions, and on the other hand to diffuse isotropically inside

homogenous and textured regions. Black regions in Fig. 1(c)

can be seen as a rough edge detection and indicate regions

where flat areas have been detected in the Fig. 1(a). So the

original image will be smoothed anisotropically in black re-

gions of Fig. 1(c) and isotropically in white regions. The cur-

vatures of the signal s(θ) (i.e. the second derivative of s(θ))
define two directions used in anisotropic diffusion in [13] and

[14], but these directions of diffusion are not precise and may

have a blurring effect on edges. Here, we will use the direc-

tions for the diffusion computed from a new anisotropic edge

detector which defines two directions, resulting in a much

more precise diffusion.

3. EDGE DETECTION USING HALF GAUSSIAN
KERNELS

Anisotropic edge detection [15] performs well to detect large

linear structures. However, near corners, the gradient mag-

nitude decreases as the edge information under the scope of

the filter decreases. Consequently, the robustness to noise de-

creases.

A simple solution to bypass this effect is to consider paths

crossing each pixel in several directions. The idea developed

in [3] is to “cut” the derivative (and smoothing) kernel in two

parts: a first part along a first direction and a second part along

a second direction. At each pixel (x, y), a derivation filter is

applied to obtain a derivative information Q(x, y, θ):

Q(x, y, θ) = Iθ ∗ C1 ·H (−y) · x · e−
(

x2

2λ2 + y2

2μ2

)
(2)

where C1 represents a normalization coefficient. Q(x, y, θ)
represents the slope of a line derived from a pixel in the per-

pendicular direction to θ (see Fig. 1(b)).

To obtain a gradient ‖∇I‖ and its associated direction, we

first compute global extrema of the function Q(x, y, θ), with

(a) Points selection (green) (b) Q(x, y, θ), μ = 10, λ = 1 and Δθ = 2◦

(c) Flat area regions (d) Diffusion along θ1 and θ2 without
μ = 5, λ = 1.5 and Δθ = 5◦ flat area detection, 20 iterations

Fig. 1. Points selection and its associated Q(x, y, θ).

θ1 and θ2. (θ1, θ2) define a curve crossing the pixel (an in-

coming and outgoing direction). Two of these global extrema

can then be combined to maximize ‖∇I‖, i.e. :

θ1 = arg max
θ∈[0,360[

(Q(x, y, θ)) and θ2 = arg min
θ∈[0,360[

(Q(x, y, θ)) (3)

and ‖∇I‖ = Q(x, y, θ1)−Q(x, y, θ2).
Once ‖∇I‖, θ1 and θ2 have been obtained, the edges can be

easily extracted by computing local maxima of ‖∇I‖ in the direction

of the angle (θ1+θ2)/2 followed by an hysteresis threshold (see [3]

for further details). In this paper, we are solely interested in the two

directions (θ1, θ2) used in our diffusion scheme. Due to the lengths

of the rotating filters, it enables to keep a robustness agains noise

and compute two precise diffusion orientations in the directions of

the edges. In [16], the authors have evaluated the edge detection

used in this method as a function of noise level.

4. ANISOTROPIC DIFFUSION IN TWO DIRECTIONS OF
THE EDGES

Unlike several diffusion scheme [8] [7] [10] [11] [12], our con-

trol function does not depend on the image gradient but on a pre-

established classification map of the initial image. As stated in sec-

tion 2, this classification is a rough classification between region and

edges. Tensor diffusion schemes preserve edges [10] [11] [12] but in

order to remove texture while preserving contours, the standard de-

viation of the Gaussian σ must be large. However this solution will

blur edges and break corners. Moreover in [7] [10] [11] [12], only

one direction is considered at edges. For minimizing these effects

we are going to consider the two directions (θ1, θ2) provided by eq.

3 of the anisotropic edge detector only in areas where flat areas have

been detected (Fig. 1(d)).

The new diffusion process can be described by the new follow-

ing equation:
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∂It
∂t

= FA(I0)ΔIt + (1− FA(I0))
∂2It

∂θ1∂θ2
(4)

where t is the diffusion time, I0 is the original image, It is the dif-

fused image at time t, and FA represents regions where flat areas are

detected.

5. EXPERIMENTAL RESULTS AND CONCLUSION

In the image presented in Fig. 2(a), the aim is to smooth the different

textures present in the image (wall, bushes) preserving all objects

(windows, panel, sidewalk). We used our detector with μ = 10, λ =
1 and Δθ = 5◦ for flat area detection (Fig. 1(c)). Parameters used

in anisotropic edge detector in order to compute (θ1, θ2) are μ = 5,

λ = 1.5 and Δθ = 2◦. The result of our anisotropic diffusion

is presented in the Fig. 2(j) after 25 iterations. Note that different

objects are perfectly visible and corners are sharp whereas textures

regions are smoothed and some of them have merged.

We compare our result with several approaches as well as the

well known Nagao [5] and bilateral filters [6]. For these different

methods, the texture is not completely removed on the wall (Fig.

2(b), (c), (d), (e), (f), , (g) and (h)) and that bushes boundaries (Fig.

2(b), (d), (f), (g) and (i)) or panel corners (Fig. 2(e), (h) and (k)) are

not correctly preserved. Tensorial approaches bring a fiber effect to

the texture if the standard deviation of the Gaussian σ is to small. If

we substitute σ, the diffusion will blur edges (σ = 4 in Fig. 2(j)).

In order to show the efficiency of our method for texture removal

(Fig. 2(t)), we compare edge detection on the original image and on

the image obtained after the diffusion [2]. Edge detection on our

diffused image is less noisy than on the original image. Moreover,

edges of bushes, panel and windows appear clearly, whereas con-

tours of bushes and wall are not completely detected on the original

image. Also, the method proposed in [13] fails detecting the top of

the panel and the approach in [12] blurs the edges of bushes. We

show also the efficiency of our texture removal using the diffusion

scheme of Perona-Malik (PM) [8] as a post processing which be-

comes stable, even after a lot of iterations. Fig. 3 shows also the

efficiency of our method representing the image surface before and

after our regularization scheme.

We have proposed in this paper a new method for removing tex-

ture in images by pixel classification using a rotating smoothing fil-

ter. Our classification method seems very promising as we have been

able to classify correctly texture regions, homogenous regions and

edge regions for various image types. Anisotropic diffusion in two

directions provided by an edge detector using half smoothing ker-

nels keeps edges and corners of different objects. Comparing our

results with existing algorithms allows us to validate our method.

Next on our agenda is to enhance this method for color images [14]

and image restoration [17].
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(a) Original image (b) Our result

Fig. 3. Image surface before and after our diffusion scheme.
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(a) Original image 411×384 (b) Texture filter [4], σ = 3 (c) Nagao filter [5] (d) PM [8] 100 iterations

(e) MCM [9] (f) Alvarez et al. [7] (g) Bilateral filter (h) Weickert diffusion

50 iterations 100 iterations, k=0.02, σ=1 [6], 3 iterations [10], 100 iterations, σ=2

(i) Tschumperlé diffusion (j) Tschumperlé diffusion (k) Magnier et al. diffusion (l) Our diffusion

[11], 6 iterations, σ=2 [12], 50 iterations, σ=4 [13] 50 iterations equation 4, 25 iterations

(m) Edges of (a) (n) Edges of (j) (o) Edges of (k) (p) Edges of (l)

(q) PM on (j) (r) PM on (k) (s) PM on (l) (t) Texture suppression in (l)

Fig. 2. Texture diffusion and evaluation with edge detection and with anisotropic diffusion using finite elements.
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