
AN OPTIMIZED MC INTERPOLATION ARCHITECTURE FOR HEVC

Zhengyan Guo, Dajiang Zhou, Satoshi Goto

Graduate School of Information, Production and System LSI, Waseda University
2-7 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan

E-mail: ocean.milo@ruri.waseda.jp

ABSTRACT

In the latest draft video compression standard, HEVC, a new

8-tap MC interpolation filter is adopted. For this component,

we propose an efficient VLSI design which is composed of

a reconfigurable filter, an optimized pipeline engine organiza-

tion, and a filter reuse scheme. This results in 30% area saving

from a non-optimized design. The proposed implementation

supports a maximal throughput of QFHD@60fps. Our results

also demonstrate the implementation cost of a well optimized

HEVC interpolation component can be comparable to that of

H.264, despite of the enhanced coding performance.

Index Terms— HEVC, interpolation, motion compensa-

tion

1. INTRODUCTION

High Efficiency Video Coding (HEVC) [1] is a draft stan-

dard under development by Joint Collaborative Team on

Video Coding (JCT-VC). It is aimed at 50% bit rate reduc-

tion compared with H.264 standard. Many new features are

proposed for better coding efficiency, including applying an

8-tap filter for high-accuracy motion compensation interpola-

tion. Motion estimation/compensation is significant for video

compression, by removing the temporal redundancy of video

contents to a large extent. In a video decoder, interpola-

tion is the most computation intensive component of motion

compensation (MC).

In HEVC, a new 8-tap interpolation filter is adopted for

fractional sample value prediction in MC [2]. The accuracy

for luma interpolation is 1/4 pixel, so 15 positions should be

calculated. It requires 11x11 reference pixels for one 4x4 sub-

block prediction in the worst case. Compared with the 6 tap

filter used in H.264 standard, the 8-tap filter will cost more

area in hardware implementation. So designing an efficient

architecture for MC luma interpolation is necessary for real

time VLSI implementation for high quality video. There are

some previous works focusing on designing efficient architec-

ture for H.264 MC interpolation [3][4][5][6].

This research was supported in part by the Knowledge Cluster Initiative

(2nd Stage) and Waseda University Ambient SoC Global COE Program of

MEXT, Japan, and by the JST CREST Project.

In this paper, firstly, we propose a reconfigurable filter to

reduce the implementation area of MC interpolation for 16%.

Secondly, We propose an optimized pipeline organization for

the interpolation engine. Thirdly, A filter reuse scheme is pro-

posed for parallelized design, which can further reduce 17%

area. In total, 30% area can be reduced by applying our pro-

posal compared with the non-optimized design.

The rest of this paper is organized as follows. In section 2,

the luma interpolation algorithm of HEVC will be introduced.

In section 3, the reconfigurable filter, the optimized pipeline

organization and filter reuse scheme are illustrated in detail.

The implementation results are analyzed in section 4. Finally,

the conclusion is presented in section 5.

2. INTERPOLATION ALGORITHM

Fig. 1. Integer,half and quarter positions of luma pixels.

In the latest standard HEVC, three types of 8-tap filters

are adopted as shown in equation (1)-(3). The detail of the

equations can be found in [1]. According to the fractional

position to be predicted, one of the three filters is applied for

1117978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

interpolation.

A0,0 = (−A−3,0 +4 ∗A−2,0 − 10 ∗A−1,0 +57 ∗A0,0 +
19 ∗A1,0 − 7 ∗A2,0 + 3 ∗A3,0 −A4,0 + 32) >> 6 (1)

B0,0 = (−A−3,0 +4 ∗A−2,0 − 11 ∗A−1,0 +40 ∗A0,0 +
40 ∗A1,0 − 11 ∗A2,0 + 4 ∗A3,0 −A4,0 + 32) >> 6 (2)

C0,0 = (−A−3,0 + 3 ∗A−2,0 − 7 ∗A−1,0 + 19 ∗A0,0 +
57 ∗A1,0 − 10 ∗A2,0 + 4 ∗A3,0 −A4,0 + 32) >> 6 (3)

Fig. 1 shows the integer, half and quarter positions of

luma component. Capital letters represent the integer posi-

tion, it is directly output without calculation. a, b, c are cal-

culated by applying the equation (1)-(3) to the nearest integer

pixels in horizontal direction, respectively. And d, h, n are cal-

culated by applying the above equation to the integer pixels in

vertical direction, respectively. Rest fractional position pixel

are calculated by applying above equation to the unrounded

intermediate of d, h, n. For example, e, f, g is calculated by

applying the equation (1)-(3) to the unrounded intermediate

value of di,0, i=-3, -2.. 4 in the horizontal direction, respec-

tively. The calculation process for i, j, k, p, q, r is the same as

e, f, g.

Thus, there are three calculation patterns for luma inter-

polation. One pattern is in position of integer, a, b and c, only

1 filter operation is needed to obtain the predicted values. The

second pattern is d, h, n and the third pattern is the rest 9 frac-

tional positions. So in the worst case, 11x11 reference pixel

values are required for interpolation of one 4x4 sub-block. A

pipelined architecture should be designed suitable for these

two calculation patterns. Besides, since the hardware archi-

tecture of the filter essentially determines the performance of

luma interpolation engine, an optimized filter architecture is

required to be proposed to reduce implementation area.

3. PROPOSED ARCHITECTURE

3.1. Reconfigurable Filter

Type Coefficients

A type [-1,4,-10,57,19,-7,3,-1]

B type [-1,4,-11,40,40,-11,4,-1]

C type [-1,3,-7,19,57,-10,4,-1]

Table 1. Three types of 8-tap filters.

Table 1 shows the coefficients of 8-tap filters. We can find

out that the coefficients of A and C type are symmetry, so

the interpolation of A and C type filters can be done with the

same hardware architecture by only reversing the order of in-

put reference pixels. Based on equation (1), (2), 12 adders are

required to realize the A type filter and 9 adders are required

for B type filter. Thus, the 8-tap filter needs at least 21 adders

to realizing hardware implementation, in total. Fig.2 (a) and

Fig.2 (b) show the architectures of optimum A and B type fil-

ters, respectively. Since only one type of the three filters is

used at one time, we can design an architecture to realize the

three filters together. So we propose a reconfigurable filter

aimed to reduce the area of the whole architecture.

(a) A type filter (12 adders) (b) B type filter (9 adders)

(c) Reconfigurable filter (16 adders)

Fig. 2. A and B type filters and the reconfigurable filter.

Fig.2 (c) shows the architecture of the proposed reconfig-

urable filter, there is a common part of A and B type filters,

which is indicated by yellow adders. We define expression of

the common part of A and B type filter as follows:

Com. = −(A+H)+ ((B+G) << 2)+ ((D+E) <<
2− (C + F)) << 3 + ((D + E) << 2− (C + F)) << 1;

So by using common part, A and B type filters can be

expressed as:

AType = Com.+(((D−E) << 4)+(D−E)−(E <<
2) + (F << 1) + (F −G));

1118

BType = Com.− (C + F);

By using this common part, A and B type filters can be

merged into one reconfigurable filter with a less number of

adders. A, B, C, D, E, F, G, H are eight input reference pix-

els, their order will be reversed when using the coefficients of

C type filter. The afir output and bfir output are the interpola-

tion results of A and B type filters, a mux is used to select the

output for one particular position. The proposed filter is com-

posed of 16 adders, it can save 5 adders of the non-optimized

8-tap filter (21 adders). The structures of horizontal and verti-

cal filters are the same. The different between them is that the

horizontal filter deal with 8-bits input reference pixels while

the vertical filter deal with 15-bits input data.

3.2. Optimized Pipeline Engine Organization

Fig. 3. Comparison of interpolation unit of H.264 and HEVC.

Fig.3 (a) shows the H.264 luma interpolator structure pro-

posed by [3]. For N-pixel parallelism, it needs N horizontal

filters, (2N+1) vertical filters and (2N+1) shift register arrays.

In this paper we propose an optimized Pipeline HEVC luma

interpolation engine. Fig.3 (b) shows the architecture of the

interpolation unit, it is composed of 1 horizontal filter, 1 ver-

tical filter and 1 shift register array. For N-pixel parallelism, it

needs N horizontal filters, N vertical filters and N shift regis-

ter arrays. Less modules are required in hardware implemen-

tation mainly due to the less calculation patterns in HEVC.

In H.264 there are 5 calculation patterns based on fractional

position, while in HEVC there are 3. We also reorder the in-

terpolation algorithm that the intermediate unrounded values

of a, b, c are used instead of d, h, n for the interpolation of e, f,

g, i, j, k, p, q, r. It is convenient for hardware implementation

but still confirms to the specification.

In the proposed architecture, for a, b, c, the values of ref-

erence pixels are transferred into the horizontal filter. Based

on the predicted position, the coefficients of horizontal filter

are selected and the rounded results of a, b, c are transferred

to the output. For d, h, n, the shift register array is used to

store the 8 reference pixels of vertical direction. They are

transferred into the vertical filter together. For e, f, g, i, j, k,

p, q, r, the shift register array is used to store the unrounded

intermediate value of a, b, c.

To predict one 4x4 sub-block by this pipelined structure,

4x11 reference pixels are needed for interpolation of G, a, b, c

and 11x11 pixels are needed for interpolation of rest fractional

positions. Since the speed of this pipeline architecture is de-

termined by how many rows of reference pixels are needed.

Thus, the execution time of proposed engine is 11x16x2 =

352 cycles/MB for bi-directional prediction, in the worst case.

The longest delay from input to output is 9 clock cycles. The

throughput is 256/352 = 0.73 pixel/cycle, in the worst case.

3.3. Filter Reuse Scheme

Fig. 4. Filter reuse scheme by sharing vertical filter.

Vertical filters cost more than 30% hardware of the whole

design. And in the process of interpolation, the best work-

load of vertical filter is only (4 cyc/11 cyc). We propose a

filter reuse scheme to reuse the vertical filters in parallelized

design, as shown in Fig.4.

Parallelized design is implemented to improve the through-

put of this subsystem. We call it dual-engine structure. When

two interpolation engines do interpolation of two different

4x4 sub-blocks, we set one engine starts 4 clock cycles ear-

lier than the other one. Thus, the vertical filters can be shared

in a time-division manner, resulting in the reduction of logic

circuits area. Half vertical filters are reduced in every two

engines.

1119

Wang’s [3] Sze’s [4] Zhou’s [5] Non-optimized Proposed Proposed

HEVC single engine dual-engine

Standard H.264 H.264, AVS HEVC

Technology 0.18um 65nm 0.18um 90nm 90nm 90nm

Gate account 20686 N/A 26300 23304 19600 32496

Parallelism 4x 8x 4x 4x 4x 8x

Execution time

cycles/MB 288 144 288 352 352 176

Area efficiency

(pixel/cycle)/k gate 0.043 N/A 0.043 0.031 0.037 0.045

Freq. for 1080p@30fps 100MHz 31.5MHz 133MHz 85.5MHz 85.5MHz 42.7MHz

Freq. for QFHD@60fps

P frame only N/A 126MHz N/A N/A N/A 171MHz

Table 2. Result comparison of previous works[3][4][5], non-optimized architecture, proposed single-engine and dual-engine.

Area efficiency = throughput / gate account.

4. IMPLEMENTATION RESULTS

The proposed architecture is implemented in Verilog HDL

and synthesized using SMIC 90nm cell library, with its clock

constraint set to 250MHz. Table 2 shows the implemented

result of proposed architecture and non-optimized one. Dual-

engine is a proposed architecture with reconfigurable filter

and filter reuse scheme for 8-pixel parallelism, and single en-

gine is for 4-pixel parallelism.

In single engine, by applying the reconfigurable filter, the

gate account of the whole proposed architecture is 19.6k at

250MHz. 16% area is reduced compared with non-optimized

HEVC MC interpolation subsystem. In dual-engine, the two

interpolation engines share 4 vertical filters by applying filter

reuse scheme, this contributes to the area reduction of 17%

compared with single engine and 30.4% compared with non-

optimized architecture.

Table 2 also compares the implemented result of H.264

and HEVC. The throughput of HEVC MC luma subsystem is

0.73 pixel/cycle, which is 18% lower than wang’s work[3] of

0.89 pixel/cycle. The lower throughput is because that 11 ref-

erence pixel rows are needed for one 4x4 sub-block prediction

in HEVC, while in H.264 only 8 rows are needed. Besides,

the implementation area of them are different. So we use

area efficiency to compare the result of H.264 and HEVC. By

applying our proposed reconfigurable filter and filter reuse

scheme, the area efficiency is improved to 0.73x2/32.5 =

0.045 (pixel/cyle)/k gate. It is comparable with H.264’s area

efficiency of 0.043.

Though using 8-tap filters in HEVC contributes to bit rate

reduction and the area is smaller by applying our proposal,

the throughput of HEVC MC is also lower than H.264. So the

hardware implementation cost of the optimized subsystem is

comparable with H.264.

5. CONCLUSION

In this paper, we propose a MC luma interpolation archi-

tecture with reconfigurable filter and filter reuse scheme for

HEVC decoder. It supports 1080p@30fps at the frequency

of 42.7MHz. By using our proposal, 30% area is reduced in

total. It can support QFHD (3840x2160)@60fps. Our results

also demonstrate the implementation cost of a well optimized

HEVC interpolation component can be comparable to that of

H.264, despite of the enhanced coding performance.

6. REFERENCES

[1] ITU-T, WD3: Working Draft 3 of High-Efficiency

Video Coding, JCTVC-E603, March, 2011.

[2] E. Alshina, ”CE3: Experimental results of DCTIF by

Samsung”, JCTVC-D344, 20-28 January, 2011.

[3] S.-Z.Wang, T.-A.Lin,T.-M.Liu, and C.-Y.Lee,” A new

motion compensation design for H.264/AVC decoder”,

in Proc.IEEE Int. Symp. Circuits Syst., May 2005, vol.

5, pp. 4558-4561.

[4] V. Sze, D. F. Finchelstein, M. E. Sinangil, and A. P.

Chandrakasan, A 0.7-V 1.8mW H.264/AVC 720 p video

decoder, IEEE J. Solid-State Circuits, vol. 44, no. 11,

Nov. 2009.

[5] D. Zhou and P. Liu, A Hardware-Efficient Dual-

Standard VLSI Architecture for MC Interpolation in

AVS and H.264, IEEE International Symposium on Cir-

cuits and Systems (ISCAS 2007), 2007.

[6] C.-Y. Tsai, T.-C. Chen, T.-W. Chen, , and L.-G. Chen,

”Bandwidth optimized motion compensation hardware

design for H.264/AVC HDTV decoder,”in Proceedings

of 2005 International Midwest Symposium on Circuit

and Systems (MWSCAS’05), 2005.

1120

