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ABSTRACT

A number of techniques have been developed to deal with
image denoising, which is regarded as the simplest inverse
problem. In this paper, we propose an approach that con-
structs a Bayesian network from the wavelet coefficients of
a single image such that different Bayesian networks can be
obtained from different input images. Then, we utilize the
maximum-a-posterior (MAP) estimator to derive the wavelet
coefficients. Constructing a graphical model usually requires
a large number of training images. However, we demon-
strate that by using certain wavelet properties, namely, inter-
scale data dependency, decorrelation between wavelet coef-
ficients, and sparsity of the wavelet representation, a robust
Bayesian network can be constructed from one image to re-
solve the denoising problem. Our experiment results show
that, in terms of the peak-signal-to-noise-ratio (PSNR) per-
formance, the proposed approach outperforms state-of-art al-
gorithms on several images with various amounts of white
Gaussian noise.

Index Terms— Image Denoising, Bayesian Network,
Wavelet Transform

1. INTRODUCTION

Complex phenomena usually involve a large number of hid-
den variables and data sources. Graphical models provide a
unifying framework for modeling the probability distributions
of complex phenomena by decomposing joint probability dis-
tributions into a set of local constraints and dependencies [1].
The models are particularly useful in signal and image pro-
cessing applications, computer vision, machine learning, and
time series analysis. After formulating a problem as a graph-
ical model, a wide range of statistical learning and inference
algorithms can be applied directly to derive a solution.

Bayesian networks are probably the most popular type of
graphical model. In this paper, our objective is to construct
a Bayesian network from a single image for denoising pur-
poses. The construction of a Bayesian network involves prior
knowledge of the probability relationships between the vari-
ables of interest. Learning approaches are widely used to con-
struct Bayesian networks that best represent the joint proba-
bilities of training data [2]. In practice, an optimization pro-
cess based on a heuristic search technique is used to find the

best DAG structure over the space of all possible networks.
However, the approach is computationally intractable because
it must explore several combinations of variable dependencies
to derive the optimal Bayesian network. Two wavelet proper-
ties can be exploited to reduce the computational complexity
of learning a Bayesian network. First, the wavelet transform
of a natural image tends to be sparse with large coefficients
at the edges and in smooth regions. The sparsity reduces the
number of variables required to construct a graph. Second,
the magnitudes of the wavelet coefficients tend to propagate
through the scales of the quad-trees; thus, the dependencies
of variables in adjacent scales can be derived from the multi-
scale quad-trees of the wavelet coefficients. The second prop-
erty motivated the authors of [3] to use the hidden Markov
tree (HMT) model to capture the joint statistics of wavelet
coefficients across scales.

Our approach shares a common framework with the
Bayesian approach in that we first construct a Bayesian net-
work from the undecimated discrete wavelet coefficients
(DWT) of an image. Then, we convert the network into a
factor graph and use the sum-product algorithm to derive the
MAP solution.

2. BAYESIAN NETWORKS AND FACTOR GRAPHS

Bayesian networks and factor graphs are graph models that
express how the joint probability of several variables is fac-
tored into the product of the local functions (factors) of
smaller sets of variables. The models are closely connected
because one representation can always be converted into
the equivalent form of the other representation [4]. Aji and
McEliece [5] demonstrated that many well-known proba-
bilistic inference algorithms, such as the belief propagation
algorithm in Bayesian networks and the sum-product algo-
rithm in factor graphs, can solve the “marginalize product-of-
functions” problem [6].

In a Bayesian network, the probability inference problem
involves assigning the most probable values to unobserved
variables given the values of the observed variables. Although
the problem is generally NP-hard, when the Bayesian network
forms a DAG, the efficient message passing scheme, called
the belief propagation scheme, can be used to solve the prob-
lem. Specifically, in each iteration of belief propagation, ev-
ery node sends a message to each of its neighboring nodes
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Fig. 1. Constructing inter-scale edges Eu
o and intra-scale edge Eu

i for two
subbands: left: two corresponding subbands at adjacent scales; middle: the
nodes and edges in the Bayesian network (the dashed line and solid lines de-
note inter-scale edges and intra-scale edges respectively); right: a realization
of the Bayesian network in the middle figure.

and receives messages from those neighbors.
A factor graph is a bipartite graph whose vertices are di-

vided into two disjoint sets, U and V , where U is a set of
variables and V is a set of functions (factors) such that ev-
ery (undirected) edge connects a vertex in U to a vertex in
V . Each edge expresses the variable that is the argument of a
particular local function. Let μx→f denote the message sent
from variable node x to function node f , and let μf→x denote
the message sent from function node f to variable node x. In
addition, let N (x) and N (f) denote the neighboring nodes of
x and f respectively. The message is computed by the max-
product algorithm for a factor graph based on the following
update rules:
variable to local function:

μx→f (x) =
∏

h∈N (x)\f

μh→x(x); (1)

local function to variable:

μf→x(x) = max
∼{x}

f(X)
∏

y∈N (f)\x

μy→f (y), (2)

where max∼{x} indicates that all variables except x are max-
imized and X is the set of arguments of the function f .

The MAP solution of the max-product algorithm is de-
fined as

x̂ = argmax
x

∏
f∈N (x)

μf→x(x). (3)

3. CONSTRUCTING WAVELET BAYESIAN
NETWORKS

A Bayesian network, denoted as B = (V,E, P ), comprises
a set of random variables and their conditional dependencies

represented by a directed acyclic graph in which the nodes
represent the elements in V . Each edge element in E takes
the form of a directed arc x → y, where x and y ∈ V . The
likelihood p(y | x) ∈ P of an edge x → y ∈ E is the
conditional probability of observing y given that x exists.

We call the Bayesian networks constructed in wavelet
domains wavelet Bayesian networks (WBNs). To construct
a WBN, we first group subbands with the same orienta-
tion together to obtain a horizontal-group(h), a vertical-
group(v), and a diagonal-group(d) of wavelet coefficients.
Next, we explain how to construct the Bayesian network
Bu(V u, Eu, Pu) that corresponds to the u-orientation with
u ∈ {h, v, d}.
A. Vertex Set V u:

Let the size of the input image F be N ×N . If J wavelet
decompositions are applied to F , there will be J subbands of
size N ×N in each orientation. Given a parameter m, with-
out loss of generality, we assume that m divides N . For each
subband, m2 variable nodes are formed and (N

m
)2 wavelet

coefficients sampled from the subband are assigned to each
variable node. Let xu

j (i, k), with j = 1, · · · , J and i, k =

0, · · · ,m− 1, denote the (i, k) variable node in the j-th sub-
band. We denote the vertex set of Bayesian network Bu to
be

V
u = {xu

j (i, k)|i, k = 0, · · · ,m− 1; j = 1, · · · , J}. (4)

Because images are usually modeled as Markov random
fields and the wavelet transforms of real-world images tend
to be approximately decorrelated, it can be assumed that the
wavelet coefficients sampled with large pixel distances are in-
dependent of each other. Thus, the (N

m
)2 wavelet coefficients

are independently sampled from some (unknown) distribution
of a random variable.
B. Edge Set Eu:

The arcs (directed edges) in Bu can be divided into two
disjoint sets, Eu

o and Eu
i , where Eu

o is comprised of (inter-
scale) edges incident to vertices at different scales, andEu

i are
the (intra-scale) edges incident to vertices at the same scale.
The persistence property of the wavelet transforms indicates
that large/small values of wavelet coefficients tend to occur at
the same spatial locations in subbands at adjacent scales and
orientations. The property can be used to construct arcs in Eu

o

by linking a vertex at the coarser scale j + 1 to the vertex of
the same index at the finer scale j; that is,

E
u
o = {xu

j+1(i, k) → x
u
j (i, k)| i, k = 0, · · ·m− 1,

and j = 1, · · · , J − 1}. (5)

The edges in Eu
i represent the connections between vertices

at the same scale and orientation. Constructing the edges
corresponds to deriving the Bayesian network on the nodes
xu
j (i, k) that best represent the joint probability of the nodes

at the same scale j and orientation u. However, this optimiza-
tion process is computationally intractable because it searches
for the best DAG structure over the space of all possible net-
works of nodes xu

j (i, k). We limit the solution space to span-
ning trees so that we can derive an efficient solution by using
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the maximal weighted spanning tree (MWST) algorithm
[7, 8]. The optimum weighted spanning tree can be derived by
minimizing the relative entropy (Kullback-Leibler distance)
D(p||q) between the probability functions p and q.

Let x be the vector of variables x1, · · · , xn; let p(i) and
b(i) denote the indices of the parent nodes and the sibling
nodes of xi respectively; and let q be the induced probability
of the spanning tree. Then, we have

q(x) =
n∏

j=1

p(xj | xp(j), xb(j)). (6)

To find the optimal spanning tree, we minimize the relative
entropy between q(x) and the joint probability p(x) as fol-
lows:

D(p||q) =
∑

x

p(x) log
p(x)
q(x)

(7)

Since minimizing D(p||q) is equivalent to maximizing∑
x p(x) log q(x), we can derive that minimizing D(p||q)

over q is equivalent to maximizing the weighted summation
of conditional mutual information

∑
j,b(j) �=∅

∑
p(j) p(xp(j)) ·

I(xj , xb(j) | xp(j)), where the weight of the arc xi → xj

is defined as p(xp(i))I(xi, xj |xp(i)). To choose a tree with
the maximum total arc weight of n nodes, we use Kruskal’s
algorithm [9].
C. Probability Model Pu:

There are two types of arcs in a Bayesian network Bu:
(1) the inter-scale parent-child arc, which connects a node
with its coarser-scale parent; and (2) the intra-scale sibling
arc, which connects two nodes of the same scale. Simoncelli
[10] exploited the persistence property of wavelet transforms
and proposed a joint statistical model of a “child” coefficient
conditioned on the coarse-scale “parent” coefficients at the
same spatial locations in all orientations. In our algorithm we
assume there is only one parent coefficient xp for x and the
bias of variance α is zero. Then, the joint probability of the
parent-child arc in Eu

o is modeled as

f
u
o (x|xp) = N (0; 2wx

2
p), (8)

where w is a chosen parameter.
In the construction of intra-scale edges, Kruskal’s algo-

rithm selects the arc x → z ∈ Eu
i , where the mutual infor-

mation between x and z is high; that is, x and z are highly
correlated. Thus, we utilize a similar concept to model the
probability of z conditioned on x as the following Laplacian
distribution function:

f
u
i (z|x) ∝ λ exp(−λ|x− z|), (9)

where λ is the scale parameter of the Laplacian distribution.

4. WAVELET BAYESIAN NETWORKS FOR
DENOISING

In this section, we consider the image denoising problem,
which involves removing additive white Gaussian noise with
zero mean and known variance from an image.

(a) (b) (c)

Fig. 2. Converting Bn to Fn and message passing: (a) a small Bn, where
x and y represent variable nodes and observation nodes respectively; (b) the
equivalent factor graph Fn, where D and x are factor nodes and variable
nodes respectively; and (c) forward message passing from the leaf (level by
level) to the root x1, and backward message passing (level by level) from the
root to the leaves.

To infer the probability for denoising, we associate each
variable node x in Bayesian network B with an observation
node y and create the arc y → x. The probability function of
x conditioned on the observed value of y is modeled as

fn(x|y) ∝
1

σn

exp(−
(x− y)2

2σ2
n

), (10)

where σ2
n is the variance of the zero mean Gaussian white

noise.
We use the message passing algorithm to obtain the esti-

mated wavelet coefficients of each realization. In our imple-
mentation, we first convert WBNBn to a factor graphFn, and
then use the max-product algorithm to derive the estimated
wavelet coefficients. In the last step of the max product al-
gorithm, the marginal probability of each variable node V in
Fn is calculated based on Equation (3) Let N (x) represent
the neighboring factor nodes of variable node x in Fn. In ad-
dition, let xp and xc denote, respectively, the parent variable
node and child variable node of x in Bn; and let {xj} denote
the sibling variable nodes of x in Bn. The value of x̂ can be
estimated based on whether x has a child node.
Case 1: x has a child node xc.

x̂ = argmax
x

∏
D∈N (x)

μD→x(x)

= argmax
x

(
1

x
exp

[
− Jc(x)

])
, (11)

where

Jc(x) =
(x− y)2

2σ2
y

+
x2

2ωxp
2
+

xc
2

2ωx2

+ λ
∑
j

|x− xj |+Ψ. (12)

In Equation (12), Ψ = Ψ(y, xp, xc, {xj}) is independent of
x, and σ2

y is the variance of the wavelet coefficients associated
with observation node y. The variance σ2

y can be written as
σ2
nρ, where ρ depends on the scale and the wavelets. We use
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(a) (b) (c) (d)

Fig. 3. Comparison of the denoised images derived by BLS − GSM ,
BM3D, and our algorithm. The noise standard deviation is σ = 25: (a) the
original Lena image; (b) the denoised result of the BLS−GSM algorithm;
(c) the denoised result of the BM3D algorithm; (d) the denoised result of
our algorithm.

an iterative quadratic approximation to estimate the root x̂ of
1
x

+ J ′
c(x) = 0.

Case 2: x does not have a child node (x is a node at the finest
wavelet scale). We can set xc = 0 in Equation (12) and obtain

J(x) =
(x− y)2

2σ2
y

+
x2

2ωxp
2
+ λ

∑
j

|x− xj |+Ψ. (13)

We also use an iterative approximation to estimate the root x̂
of J ′(x) = 0.

Table 1
Image Method PSNR

σn = 15 σn = 25 σn = 35

Einstein BLS − GSM 32.6818 31.0201 29.9372
512 × 512 BM3D 33.0331 31.4186 30.3777

Our 33.2768 31.7125 30.6061

Barbara BLS − GSM 30.7724 27.8214 25.9775
512 × 512 BM3D 33.0666 30.7176 28.8879

Our 33.2223 30.8669 28.6159

Lena BLS − GSM 34.1105 31.7891 30.278
512 × 512 BM3D 34.8782 32.5501 31.0301

Our 35.0229 32.6287 31.0807

Baboon BLS − GSM 27.8549 24.9483 23.2643
512 × 512 BM3D 28.139 25.3495 23.6554

Our 28.3655 25.5593 23.8645

5. THE PROPOSED DENOISING ALGORITHM AND
EXPERIMENTAL RESULTS

For the experiments, we downloaded several gray scale
images of size 512×512 from USC-SIPI image database [13],
and added different amounts of white Gaussian noise to them.
The parameter settings of the WBN denoising algorithm eval-
uated in the experiments are: J = 4 (the number of wavelet
decompositions) , ω = 0.64 (Equation (8)), λ = 0.45 (Equa-
tion (9)). Each subband is of a 512× 512 image and contains
4× 4 nodes (m = 4 in Section 3A).

Table 1 lists the PSNR results of three compared meth-
ods for four images in different noisy environments with
σn = 15, 25 and 35. The proposed method outperforms the
BM3D[11] and BLS − GSM [12] methods on all images
in each noisy environment. The improvement derived by our
method is not significant; even so, the results are encouraging

because this is the first time that an algorithm has outper-
formed BM3D without adopting non-local means denoising
techniques. In Fig.3, we compare some images that were
denoised by the three methods.

6. CONCLUSION

For image denoising, we use a Bayesian network constructed
from the estimated wavelet coefficients of the input image.
Different images can yield different wavelet Bayesian net-
works. To derive the wavelet coefficients, we use the standard
probability inference algorithms for graph models. In general,
a large number of training images are required to robustly es-
timate the parameters used to construct a Bayesian network.
In our construction, it is possible to use non-parametric sta-
tistical techniques to derive a Bayesian network from a single
image. We compare the denoised results of several images
containing various levels of noise and demonstrate that the
PSNR performance of our method is uniformly better than
that of two state-of-the-art algorithms.
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