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ABSTRACT

This paper discusses resolution enhancement of a set of im-

ages with varying exposure durations, having a high com-

bined dynamic range. So far, little has been said in relation to

the Human Visual System when it comes to Super-Resolution

and High Dynamic Range fusion, unlike the case for tradi-

tional Super-Resolution where errors are measured with re-

spect to human perception in the pixel domain. We propose

a Super-Resolution method in the L*a*b* domain to bridge

that gap and present some image reconstruction results.

Index Terms— Super-Resolution, Dynamic Range, Im-

age Reconstruction, Regularization, Human Visual System

1. INTRODUCTION

For good visual quality in digital images it is desirable that the

image has a high spatial resolution as well as a high dynamic

range of light intensities, the latter to avoid clipping at over- or

underexposed image areas. Applications range from artistic

photography to astronomy and tracking.

Image resolution may be enhanced by Super-Resolution

(SR) reconstruction techniques as an alternative way of us-

ing more expensive cameras. SR image reconstruction uti-

lizes multiple Low Resolution (LR) images that are degraded

by blur and noise and slightly shifted relative to each other,

see [1] for a good overview of SR techniques or the exam-

ple software in [2]. Several SR methods sequentially estimate

blur and motion before the SR Reconstruction (SRR) of the

unknown High Resolution (HR) image. More sophisticated

methods use Blind Super-Resolution (Blind Deconvolution

after downsampling) where blur, motion and HR image are

estimated simultaneously [3, 4].

High Dynamic Range (HDR) images are typically created

from multiple Low Dynamic Range (LDR) images with var-

ied exposure durations [5]. They contain more detail than a

single image, that is inherently bound to be LDR due to sen-

sor dynamic range limitations. To be visualized on a moni-

tor, a HDR image needs to be processed by a so called tone-

mapping operator (TMO) [6], that transforms an HDR image

to an LDR image while trying to maintain the same perceived

appearance for the Human Visual System (HVS). The Image

Appearance Framework in [7] provides a TMO that makes

an ambitious attempt to model the HVS. It is not until re-

cently that HDR modeling has been in focus. Whereas color

spaces for e.g. perceptual uniformity of brightness is based

on large studies for LDR imagery, studies on extended lumi-

nance (HDR) levels for perceptual uniformity [8] and color

constancy [9] are only from the recent years.

Few attempts have been made of combining SR and HDR

imaging in the past [10, 11, 12, 13]. By performing the SRR

in the illuminance domain (photometric exposure divided by

exposure duration), before the camera maps the exposure to

pixel values, it is straight forward to allow varying exposure

durations. However, opposite to the pixel domain (sRGB,

where standard SRR is performed), the illuminance domain

is not perceptually uniform (PU) to brightness in the HVS.

Thus, errors in illuminance will not be weighted according

their to perceptual severity. Still, [10, 11, 12, 13] all run their

SRR algorithms in the illuminance domain, where artifacts

easily arise, as discussed further in section 2.2.

Recently, [10, 11] proposed methods for combining SR

and HDR imaging. They extend traditional regularized SR

to differently exposed images. The drawback is that they use

a full set of LR, LDR images. A downsampling factor of 4

implies that 16 LR images (for each exposure duration) are

used to recover a unique solution. This is unpractical in a real

case, where we wish to limit the number of observations. In

[12], the image to be reconstructed is segmented according to

lightning conditions and only one exposure duration is used

for SRR in each segment. Non-saturated information from

images with other exposure durations are not used in the same

image segment, thereby avoiding the problem of interlacing

information from differently exposed images, but at the cost

of throwing away valid, useful data.

Motivated by the above, we propose a novel method for

joint SR and HDR image reconstruction from a set of LR,

LDR images. It extends [10, 11] to not necessarily having a

full set of LR, LDR images. Furthermore, we transform our

images to a domain that is more related to the HVS and draw

parallels to traditional (LDR images) Super-Resolution. In

section 2, we formulate the method, in section 3 we present

some results and finally we conclude the paper in section 4.
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Fig. 1. Left: (a) CRF f (red color channel) as estimated from three
differently exposed (real) LR, LDR images by the method in [5]. Right: (b)
Total dynamic range of illuminances for 3 different exposure durations.

2. MATHEMATICAL FORMULATION

In this section we first describe the observation model for how

the LR, LDR images are obtained. We then proceed with the

model for joint SR and HDR image reconstruction.

2.1. Observation model

A real-world scene is observed through a set of LR and LDR

images

yk = f(DBkMk(Δtkx) + na
k), k = 1, .., p (1)

where x is a vector (for notational simplicity) of a desired

HR image representing a continuous scene. The nonlinear

Camera Response Function (CRF) f maps the sensor expo-

sures H = ΔtkE, the product of exposure duration Δtk and

pixel-wise illuminance E to pixel values. An example CRF

is shown in Fig. 1 (a). The images are shifted relative to a

reference image yref , as represented by the warping matrix

Mk, blurred by Bk, downsampled by D a factor L in x- and

y-dimension and corrupted by AWGN na
k. Together, Mk, Bk

and D map a small region of HR pixels from x to a single

LR pixel in yk. Contrary to traditional Super-Resolution, the

observed images may be differently exposed, each with an

exposure duration Δtk, giving a higher combined dynamic

range as shown in Fig. 1 (b). A common assumption for Mk

is to only allow planar motion, e.g. global translational and

rotational motion as in [14].

2.2. Model for Joint SR and HDR image reconstruction

The objective of the SRR is to reconstruct an estimate x̂ of

the HR, HDR illuminance image x observed through the LR,

LDR images yk. We propose to consider the properties of

the HVS and take x̂ as the inverse f̃−1(ẑ) of the minimizer

of the regularized weighted 2-norm of the pixel differences

after pixel-wise transformation ẑ = f̃(x̂) from the RGB il-

luminance domain to a domain that is closer to being linear

to the perceptual sensation of the HVS. We minimize the cost

function

C(ẑ) =
p∑

k=1

|(DB̂kM̂kẑ − f̃(g(yk)/Δtk))|2W (yk)+

+ λΨ(ẑ),

(2)

where g(yk) ≈ f−1(yk) (approximate inverse, due to quan-

tization, f being many-to-one) transforms the observations

yk(k = 1, .., p) in (1) to exposure values and thereafter to the

illuminance domain by dividing with Δtk, under the assump-

tion that the camera-dependent response function f is known

or estimated in advance. f̃ transforms the RGB illuminance

images g(yk)/Δtk and x̂ in (2) to the L*a*b* color space

[15], where the L*-channel of L*a*b* approximates light-

ness, a term for subjective perceived brightness (a grayscale

measure) of the HVS. The a*- and b*-channels are designed

to give good color consistency through color appearance uni-

formity and, importantly, to be perceptually orthogonal to L*.

Notice that we have taken the operators on x̂, DB̂kM̂k, out-

side of f̃ . This is analogue to the traditional LDR SR ap-

proach, with f̃ being f in that case and Δt kept fixed.

The regularization function Ψ(ẑ) in (2) is needed to

limit the solution space of the typically underdetermined

SRR. For images, it should typically enforce smoothing with

preservation of strong edges1 [16]. In [13], an anisotropic

regularization function that does not smooth in edge gradient

directions is attempted. Estimates M̂k and B̂k are obtained

from pre-processing. The relative shifts Mk between the LR

images may be estimated e.g. using [14] (assuming global

planar motion) on mutually non-saturated image parts. The

B̂k is taken as a 2-d Gaussian with variance σ2.

Gradient Descent is used to solve (2), iterating

ẑ(n) = ẑ(n−1) − β ∇C(ẑ(n−1)), (3)

where

∇C(ẑ) =
p∑

k=1

M̂T
k B̂T

k DT W(yk)(DB̂kM̂kẑ−

− f̃(g(yk)/Δtk)) + λ∇Ψ(ẑ),

(4)

until convergence. The step size β can be set adaptively as

in [10]. In general, if the inverse SRR problem is solved us-

ing p = L2 non-saturated observations, such that a unique

solution exists, x is recovered exactly for na
k = 0. If how-

ever the SRR problem is underdetermined, which is the usual

case, artifacts easily arise near image edges. These artifacts

are a result of the smoothness enforced on the solution, and

the inability of edge-preserving regularization functions to

fully overcome smoothing of strong edges. For HDR SRR in

the illuminance domain, with C(x̂) =
∑p

k=1 |(DB̂kM̂kx̂ −
g(yk)/Δtk|2W + λΨ(x̂) as the cost function, prominent edge

artifacts would frequently occur at low illuminance levels,

due to the large perceptual impact in the HVS (and thus in

any suitably designed TMO) of small errors in the region of

low illuminance values. On the contrary, the artifacts are less

visible for SRR in the L*a*b* domain, thanks to the transfor-

mation of the channels to perceptual uniformity.

1Edge-preserving filtering in Super-Resolution reconstruction is not as
simple to implement as when just filtering a given image. This is evident
from experiments and e.g. the results in [16] where "edge-preserving" regu-
larization methods perform worse than pure smoothing regularization.
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Fig. 2. Left: 4 different exposures to cover the full dynamic range of the
scene in Fig. 4 (d). Selection of optimal exposure duration is outside the
scope of this paper. Right (5th image): Underexposed (red) and overexposed
areas (green) for the image in (c). These areas have weight zero in the SRR.

Fig. 3. Top-left: Zoom-in on the tone-mapped SRR result in Fig. 4 (c),
from reconstruction in the proposed L*a*b* domain. Top-right: Reconstruc-
tion of the same original image but in the illuminance domain. Note the edge
artifacts. Bottom: SSIM quality maps generated by the algorithm in [17]
between the full versions of the above images and the original scene in 4 (a).

3. EXPERIMENTAL RESULTS

In this section, we present some HR, HDR reconstruction re-

sults using semi-synthetically generated observations. Given

an original illuminance image x, a set of observations yk

are generated by (1), using a simple but realistic power law

gamma encoding function f(H) = Hγ , γ = 1/2.2 after nor-

malization of the non-saturated exposure to H ∈ [0, 1]. The

dynamic range was set to g(255)/g(0) = 10/0.01 = 103,

similar to what [5] gives for the CRF estimate in Fig. 1 (a).

Bk is set to have a Gaussian kernel with σ = 0.75 and the

downsampling factor is L = 4. The noise na
k is assumed to

be negligible and is set to zero. It should be set with regard

to the scene illuminance, for which [5] provides no absolute,

only relative, values. Two original HR, HDR images, Bel-

gian House and Memorial Church [18] in Fig. 4 (a) and (d)

respectively, are used for generating sets of LR, LDR obser-

vations. For Belgian House, Δtk ∈ {1/250, 1/30, 1/4} and

for Memorial Church Δtk ∈ {1/32, 1/4, 2, 16}. Fig. 2 shows

examples of observed images yk for the 4 different exposure

durations for Memorial Church. Fig. 3 demonstrates the edge

artifacts discussed in section 2.2. Artifacts are clearly visible

for SRR in the illuminance domain, but not for SRR in the

proposed L*a*b* domain using (2).

Fig. 4 (b), (c) and (e) show tone-mapped SRR results, us-

ing the propsed method, from the observation sets. In (b), 16

LR images per exposure duration are used. In (c) and (e), 7

LR images are used for each exposure duration. Fig 4 (f) pro-

vides a comparison with a result from [11] that uses a full set
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Fig. 5. MSSIM for tone-mapped reconstructions of the original image in
Fig. 4 (d) as a function of number of LR images used per exposure duration.
Each MSSIM value is an average of 20 simulations with randomly chosen LR
warpings. Bicubic interpolation of one LR, HDR image has MSSIM 0.65.

of LR, LDR images and a downsampling factor L = 2 (just

to give some idea of the performance, as the full resolution of

reconstructed images do not fit in this paper). Mk is assumed

to have been estimated perfectly and Bk are assumed to be

known in advance, thus M̂k = Mk, B̂k = Bk. A Tikhonov

regularization ||Γz||2 is used for Ψ(z) with a 3 × 3 Lapla-

cian kernel (Γ a 2-d convolution matrix), as suggested by the

results in [16]. All three L*a*b*-channels are normalized to

[0,1] to allow simpler tuning of β and the regularization coef-

ficient λ, here set empirically to be 0.3 and 0.1 respectively.

The weighting matrix W(yk) should give higher weight

to observations with low perceptual errors. Since each of the

LDR images yk are quantized in the PU sRGB domain spe-

cific for LDR images, the perceived quantization errors be-

come a function of Δtk after mapping to a domain of higher

combined dynamic range. How to set W optimally is left out

for now and we simply set weight 1 for non-saturated pix-

els and 0 for saturated pixels. This would be the case if SR

HDR was implemented in a camera; quantization to only 8-bit

channel depth would not be implemented for the LDR images.

Performance evaluation: Objective quality measures

are less established for HDR images than for LDR images.

We apply MSSIM scores [17] between the tone-mapped orig-

inal HR, HDR image x in Fig. 4 (d) and reconstructed images

x̂ as a function of the number of LR images used for each

Δtk, as presented in Fig. 3. It gives some indication that the

proposed SRR method gives reasonable performance even

for a relatively low number of observations.

4. CONCLUSION

We have presented a novel SR and HDR image reconstruc-

tion method in the Perceptually Uniform L*a*b* domain,

where reconstruction errors are weighted by their perceptual

severity. The results indicate that we can use a smaller set

of LR, LDR observations and achieve comparable results to

other methods using a full set of observations. Interesting

future work includes to incorporate Blind Super-Resolution

for HDR images to estimate unknown blur and subpixel mo-

tion as a combined convolution kernel, making the model

more suitable for real data, and to use other methods to weigh

errors with respect to the HVS.
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Fig. 4. Upper row, left to right: (a) Original image Belgian House [18] with a dynamic range of 1.26e4. (b) SRR from 16 LR images for each of the
3 exposure durations. (c) SRR from 7 LR images for the 3 exposure durations. Bottom row, left to right: (d) Original image Memorial Church [18] with a
dynamic range of 1.80e6. (e) SRR from 7 LR images for the 4 exposure durations. (f) Reconstruction result from [11] using a full set of LR, LDR images for a
downsampling factor L = 2. (g, h) Zoomed-in window of images in (e) and (f) respectively, showing comparable results despite using a reduced set of images
in (e). The big difference in brightness is a result of different tone-mapping operators used. The tonemap function in MATLAB was used for all of our results.
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