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ABSTRACT
In this paper, we show that a patch-based approach can suc-

cessfully be applied for impulse noise removal. This requires

careful choices for both the distance between patches and for

the statistical estimator of the original patch. This method

proves to be particularly powerful, especially for the restora-

tion of textured areas, and compares favorably to recent

restoration methods.

Index Terms— restoration, impulse noise, non local

methods, image patch, order statistics.

1. INTRODUCTION

Impulse noise is generally caused by errors appearing during

the acquisition or the transmission of images. Removing this

kind of noise while preserving image details and textures is of

great importance before most image analysis tasks (edge de-

tection, segmentation, etc). Two models of impulse noise are

generally used in the literature. In the first one, called salt-
and-pepper noise, each grey level is replaced with a given

probability by 0 or M , where [0,M ] designs the range of the

original image. In this paper, we focus on the second model,

called random-valued impulse noise, where each grey level

value is replaced with probability p, called noise ratio, by a

random value in the interval {0, . . . ,M}. More precisely, if

the discrete damaged image is denoted by u and the origi-

nal image is denoted by u0, both defined on a discrete do-

main Ω, u is a realization of a random image U such that

{U(x), x ∈ Ω} are independent random variables and such

that the law of U(x) is a mixture between a uniform distribu-

tion on {0, . . .M} (with weight p) and a Dirac mass centered

at u0(x) (with weight 1 − p). Observe that detecting and re-

moving random-valued impulse noise is much more difficult

in practice than removing salt-and-pepper noise.

The traditional approaches for impulse noise removal act

locally and non linearly on images. Among them, let us men-

tion the median and its extensions [1, 2]. These approaches

modify all pixels indifferently, while impulse noise affects
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only a portion of the pixels. In order to avoid this shortcom-

ing, the trend for nearly twenty years has been to propose

different impulse noise detectors and to restrict the restora-

tion to pixels detected as corrupted. For instance, this idea

underlies the switching median filter [3], the adaptive cen-

ter weighted median filter (ACWMF) [4] or the pixel-wise

median absolute deviation [5]. Unfortunately, median-based

methods tend to destroy details and textures in images when

the noise ratio is large. A successful alternative consists in

combining a well chosen impulse detector, generally relying

on local order statistics of grey level differences, with a global

or at least semi-local restoration approach. This is the case

of [6], which combines the Rank Order Absolute Differences

(ROAD) for detection with a trilateral filter for restoration.

This scheme is also followed by the authors of [7, 8], who

rely on ACWMF, or ROLD (Rank-Ordered Logarithmic Dif-

ference) for detection, before applying a variational approach

to restore corrupted pixels.

The approach presented in this paper for impulse noise

removal relies on the patch redundancy inside images. In

the last fifteen years, a great deal of restoration methods have

been developed in order to take advantage of this property [9,

10, 11]. Let us mention in particular the Non Local Means,

which have been first introduced by Buades et al [9] to tackle

Gaussian noise in images, and are now declined or improved

for different kind of noises [12, 10, 13, 14, 15]. The mathe-

matical framework adapted to deal with this redundancy is the

one of statistical estimation: we aim at estimating the real un-

derlying patch behind different degraded versions. The goal

of this paper is to model properly this estimation scheme in

the case of images suffering from impulse noise. Let us make

clear the different steps of this scheme. At each point x in Ω,

we want to estimate u0(x) from all the values u(y) when y
spans a region Vx around x (in this paper Vx is a square of

size (2t + 1) × (2t + 1) centered at x). The first step of the

estimation consists in deciding which pixels y can be trusted

in the estimation of u0(x). For this task, we introduce in Sec-

tion 2 a measure of similarity D between patches, designed

to be robust to impulse noise. This permits to order the pix-

els y in Vx in function of D(Px,Py), where Px and Py are

(2f + 1)× (2f + 1) patches centered at x and y. We call Vn
x
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the subset of Vx corresponding to the n smallest distances,

and only rely on the n-tuple (u(y), y ∈ Vn
x ) for the estimation

of u0(x). The second question, tackled in Section 3, concerns

the choice of a judicious estimator E of u0(x). Experiments

and comparisons with recent approaches are displayed in Sec-

tion 4.

2. ROBUST DISTANCE BETWEEN PATCHES

The success of any patch-based denoising procedure relies

greatly on the ability to find similar patches in the noisy im-

age u. More precisely, for a given patch P in u, we aim

at discovering all patches Q such that the unknown original

patches P0 and Q0 in u0 are equal or at least similar. Since

P and Q are affected by impulse noise, the euclidean (L2)

distance between P and Q relies on some outliers and can-

not be trusted. In this work, we propose to rely on a robust

dissimilarity measure, inspired by order statistics [16]. Let

r1 ≤ r2 ≤ · · · ≤ r(2f+1)2 be the values obtained by order-

ing the (2f + 1)2 values of the differences |P(y) − Q(y)|.
If P and Q are two independent random patches such that

P0 = Q0, the probability that the kth difference rk stems

from two untouched pixels is B((2f +1)2, k, (1− p)2) (with

the approximation that the smallest distances correspond to

untouched pixels), where B denotes the tail of the binomial

distribution 1. We take these probabilities into account and

propose to use the robust distance

D(P,Q) =

(2f+1)2∑
k=1

B((2f + 1)2, k, (1− p)2)r2k. (1)

3. CHOICE OF THE ESTIMATOR E

In this section, we aim at defining a good estimator E of

u0(x). The estimator E should only rely on the values u(y)
for y in Vn

x (this set can be computed once D is defined).

Let us start with a much simpler problem. Instead of esti-

mating u0(x) from other values u(y) in the degraded image

u, assume a case where several independent realizations of

the random value U(x) are observed. In this case, it can be

easily shown that the maximum likelihood estimator (MLE)

of u0(x) corresponds to the most represented value among

these samples. If we compute the discrete histogram of these

n samples (on M + 1 bins), this value is the place where

the histogram attains its maximum 2. Synthetic experiments

prove that the bias and variance of the median estimator are

larger than those of the MLE for this model, especially when

the noise ratio p is high.

In practice, values u(y), y ∈ Vn
x , cannot really be con-

sidered as independent realizations of U(x), since the un-

derlying patches are only similar, not perfectly equal. In

1B(n, k, q) = ∑n
i=k

(n
i

)
pi(1− p)n−i.

2If the histogram attains its maximum at more than one bin, one of them

can be chosen randomly, with equal probabilities.

order to take this uncertainty into account, we assume that

these values are n independent realizations of a mixture be-

tween a uniform distribution on {0, . . . ,M} and a Gaussian

distribution of mean u0(x) and unknown standard deviation

s(x). We note g
s(x)
u0(x) this Gaussian distribution. Let us de-

note by v1, . . . , vn the observations u(y), y ∈ Vn
x and by

V1, . . . , Vn the corresponding random variables. The MLE

(Eu0(x), Es(x)) of the couple (u0(x), s(x)) is obtained by

looking for the value (θ, σ) which maximizes the quantity

logP[V1 = v1, . . . Vn = vn|u0(x) = θ, s(x) = σ]. This

can be rewritten by using the histogram h of the values

{v1, . . . , vn} on {0, . . . ,M},

(Eu0(x), Es(x)) =

argmax
θ,σ

M∑
m=0

h(m) log

(
p

M + 1
+ (1− p)gσθ (m)

)
.

As a consequence, the MLE is the value where the discrete

convolution h ∗ fσ(θ) attains its maximum, with fσ : m �→
log

(
p

M+1 + (1− p)gσ0 (m)
)

.

Observe that the estimator E depends on a good esti-

mation of p and on a number n of trusted patches. We

will see in Section 4 how to estimate p globally on the

degraded image. As for the number of patches, it is com-

puted empirically as the smallest n such that the probability

P[|Eu0(x)(V1, . . . , Vn) − u0(x)| ≥ σ] is smaller than 0.01,

for σ = 5 (see Table 1). Let us remark at this point that this

number varies slowly with values of σ between 5 and 20. In

other words, the choice of σ is not crucial.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
n 8 10 14 18 22 32 50 92

Table 1. Number n of patches used in E for each value of p.

4. EXPERIMENTS AND DISCUSSION

Implementation details. The first step of our denoising pro-

cedure consists in estimating the noise ratio p. For this task,

we rely on the detector ROAD (for “Rank Ordered Absolute

Differences”), proposed in [6]. This detector can be described

as follows: for each pixel x, the absolute differences between

u(x) and u(y) are computed for all y �= x in a centered 3× 3
patch around x. These differences are ordered. The value

ROAD(x) is obtained by computing the sum of the 4 smallest

differences. This value measures how close u(x) is from its

neighbors. When ROAD(x) is above a given threshold τ , set

as 70 in our experiments, x is considered as noisy. Other de-

tection procedures could be used for estimating p [4, 5, 8, 17].

We choose to rely on ROAD mainly because the correspond-

ing estimation of p is generally good and fast to compute. Fig-

ure 1 shows the quality of this estimation for different values

of p on the 512× 512 image Lena.
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Fig. 1. Estimation of the impulse noise parameter p on the

512 × 512 version of Lena. The results p are shown as box-

plot graphics, where the horizontal axis represents the tested

values of p, from 0.1 to 0.9. Boxes are the statistics obtained

from 100 samples for each value of p.

Once p is computed, we estimate n empirically, as ex-

plained at the end of Section 3. Values of n can also be tabu-

lated once for all for quantized values of p (see Table 1). The

algorithm continues as follows. For each point x in Ω, we

seek the n nearest of neighbors Py of Px when y spans Vx.

This permits to define Vn
x , the subset of Vx corresponding to

these n nearest neighbors. The MLE (Eu0(x), Es(x)) is then

computed at each x from the n-tuple (u(y), y ∈ Vn
x ). The

image u1(x) = Eu0(x) constitutes a first denoised version of

u(x). However, this restored image is sometimes a little bit

too smooth. In order to recover the grain of the original im-

age, we take into account the estimated standard deviation

s(x) at each point for defining a map of noisy pixels:

M = {x ∈ Ω; |Eu0(x) − u(x)| > Es(x)}.
The new restored image is then defined as a mixture of u1 and

u: ũ1(x) = u1(x).1x∈M + u(x).(1 − 1x∈M). In practice,

we repeat these steps twice and the output of the algorithm

is given by ũ2. In all our experiments, the half-size of the

research neighborhood and the half-size of the patches are set

as t = 7 and f = 3.

A refined version of the algorithm can be obtained by fol-

lowing the approach introduced in [18]. Notice that a point x
belongs to all patches Px+δ , δ ∈ [−f, f ]× [−f, f ]. The idea

of the refinement is to take into account in the estimation all

the information from these patches. In this version, the MLE

is computed at each x from

(
u(y − δ); δ ∈ [−f, f ]× [−f, f ] and y ∈ Vn

x+δ

)
.

This refined version is the one used in the experiments.

Experiments. In this paragraph, we compare our scheme

with the recent state of the art approaches [6, 8]. One common

way to measure the quality of the restored image v is to use

the PSNR, given by the formula

PSNR(u0, v) = 10 log10
2552#Ω∑

x∈Ω(u0(x)− v(x))2
,

where #Ω is the size of the support of u0. Table 2 describes

the PSNR obtained with the three methods on the 512 × 512
classical images Lena, Bridge and Baboon (the images

used here are those available on the website www.math.
cuhk.edu.hk/˜rchan/paper/dcx). The PSNR re-

sults for [6, 8] are taken from Table 1 in [8]. Our result is

thus obtained with a different noise sample. These tables

show very similar performances between our method and

ROLD-EPR, and prove that a patch-based approach is well

founded for random-valued impulse noise removal. Let us

also insist on the fact that the parameters of our approach

(patch size, research neighborhood size, number of iterations,

ROAD threshold) were fixed for all these experiments. Better

results can be obtained by optimizing these values for each

image.

Figure 2 provides a visual comparison of the results of

different algorithms on the 512 × 512 versions of Lena and

Barbara, with respective noise ratios p = 40% and p = 50%.

Enlarged portions of the images are shown for better visual-

ization. The code used for the trilateral filter is the one pro-

vided by its authors 3 and its parameters are set as advised

in [6]. The code of ROLD-TVL1 was kindly provided by V.

Duval [19] and its parameters are optimized empirically to

obtain the best visual result. This algorithm is used here in-

stead of ROLD-EPR, whose code was not available. If the

regularization term in TVL1 is slightly different from the one

of EPR, the results of ROLD-EPR and ROLD-TVL1 for im-

pulse noise removal are in practice quite similar (see for in-

stance [19]). On Lena, the result of our non local scheme

seems smoother than the ones of ROLD-TVL1 and ROAD-

trilateral, in which some clues of impulse noise remain. On

Barbara, while all schemes yield a quite reasonable regular-

ization on constant regions, our scheme is the only one to

handle the texture of the clothes properly.

Lena

Method p = 20% p = 40% p = 60%
ROAD-Trilateral [6] 37.70 31.12 26.08

ROLD-EPR [8] 37.45 32.76 29.03

Our method 38.33 34.18 29.96

Bridge

Method p = 20% p = 40% p = 60%
ROAD-Trilateral [6] 27.60 24.01 20.84

ROLD-EPR [8] 27.86 24.79 22.59

Our method 27.68 24.80 22.03

Baboon

Method p = 20% p = 40% p = 60%
ROAD-Trilateral [6] 24.18 21.60 19.52

ROLD-EPR [8] 24.49 21.92 20.38

Our method 24.17 22.02 20.13

Table 2. PSNR results of different restoration filters for the

512× 512 images Lena, Bridge and Baboon.

3www.ssc.wisc.edu/˜thuegeri/RTtrilateral.m
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Fig. 2. Comparative results on Lena and Barbara. First line: noisy image (p = 40%), trilateral filter, ROLD+TVL1, our result.

Second line: noisy image (p = 50%), trilateral filter, ROLD+TVL1, our result.
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