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ABSTRACT

A novel image denoising technique is proposed by using direc-
tional lapped orthogonal transforms (DirLOTs). DirLOTs satisfy
orthogonality and the bases are allowed to be anisotropic with the
fixed-critically-subsampling, overlapping, symmetric, real-valued
and compact-support property. In this work, DirLOTs are used
to construct directional symmetric orthonormal discrete wavelet
transforms and then the bases are adopted to generate a redundant
dictionary with several directions. The multiple directional property
is suitable for representing natural images which contain diagonal
edges and textures. The proposed dictionary is applied to solve
the basis pursuit denoising problem. The denoising performance
is evaluated for several images through the heuristic shrinkage and
block-coordinate-relaxation algorithm. It is verified that the pro-
posed technique is simple but yields perceptually preferable results.

Index Terms— DirLOT, Basis pursuit, Wavelet denoising,
Heuristic shrinkage, Block-coordinate-relaxation algorithm

1. INTRODUCTION

In this study, we deal with a common problem of image denoising,
i.e. removal of additive white Gaussian noise (AWGN) from a given
image [1]. Let x ∈ R

N be an observed image which is represented
by

x = x∗ +w,

where x∗ ∈ R
N and w ∈ R

N are the original clean noiseless image
and AWGN with zero mean and no correlation to the other pixels,
respectively, i.e. E{w} = 0 and E{wwT } = σ2I.

Image denoising is a problem of finding a good candidate image
x̂ ∈ R

N of the unknown noiseless image x∗ only from the observed
image x. Popular denoising approaches include solvers for the ba-
sis pursuit denoising (BPDN) problem [1]. The BPDN problem as-
sumes that the candidate x̂ is expressed by a linear-combination of
image prototypes (atoms) in a dictionary D ∈ R

N×L, i.e.

x̂ = Dŷ,

where ŷ ∈ R
L is a candidate coefficient vector, and refers to the

solution of the following form of optimization problem:

ŷ = argmin
y

1

2
‖x−Dy‖22 + λT |y|, (1)

where ‖ · ‖22 is the squared-�2-norm of the argument, y ∈ R
L is a

coefficient vector and λ ∈ R
L is a parameter vector to control the

trade-off between sparsity and reconstruction fidelity. If all elements
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Fig. 1. Lattice structure of a DirLOT (forward transform)

of λ are the same as each other and represented by a scalar λ, the
second term of the right hand side reduces to λ‖y‖1, where ‖ · ‖1 is
the �1-norm of the argument.

There are several approaches to solve the BPDN problem in
Eq. (1). The parallel-coordinate-descent (PCD) iterative-shrinkage
is an example of such solvers, which is computationally efficient
and applicable to large data such as images [1]. Furthermore, the
PCD algorithm has a merit that it reduces to the block-coordinate-
relaxation (BCR) algorithm when the dictionary D is constructed as
a union of unitary matrices and becomes more efficient [2]. A simi-
lar approach can also be found in the article [3]. The selection of the
dictionary D is a quite important task for building a BPDN solver
since it influences not only the computational complexity but also
the denoising quality.

Recent development of image transforms involves non-separable
transforms for handling diagonal edges and textures since separable
transforms are weak in representing such geometrical structures [4].
As a previous work, we have proposed 2-D non-separable directional
lapped orthogonal transforms (DirLOTs) [5]. The bases are allowed
to be anisotropic with the fixed-critically-subsampling, overlapping,
orthogonal, symmetric, real-valued and compact-support property.
The hierarchical tree construction yields a 2-D directional symmetric
orthonormal discrete wavelet transform (DWT). A single DirLOT
for a fixed direction, however, is less useful for natural images which
contain rich amount of geometrical structures. There are two ways to
overcome this drawback. One is local adaptive control of basis [6],
and the other is redundant representation [1]. We adopt the latter
case in this paper and consider adopting a union of tree-structured
DirLOTs as a dictionary D so that we can use the BCR algorithm
for solving the BPDN problem.

2. REVIEW OF DIRECTIONAL LOTS

This section reviews DirLOTs and shows a design example.

2.1. Lattice Structure of 2-D Directional LOTs

DirLOTs can be constructed with a lattice structure as shown in
Fig. 1 [5], where M is a decimation matrix, z = (zy, zx)

T ∈ C
2 is a

variable vector in the 2-D Z-transform domain and d(z) is a 2-D de-
lay chain. The corresponding polyphase matrix of order [Ny, Nx]

T
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Fig. 2. A design example of DirLOT with the two-order TVMs of
φ = π

6
[rad], where [Ny, Nx]

T = [4, 4]T , i.e. the basis size is 10 ×
10. Note that the vertical axis directs from top to bottom in (b).

is represented by the following product form:

E(z) =

Ny∏
ny=1

{
R{y}

ny
Q(zy)

}
·

Nx∏
nx=1

{
R{x}

nx
Q(zx)

}
·R0E0, (2)

where Q(z) = 1
2

(
I I
I −I

) (
I O
O z−1I

) (
I I
I −I

)
, R0 =

(
W0 O
O U0

)
, and

R
{d}
n =

(
I O

O U
{d}
n

)
. The product of sequential matrices is defined

by
∏N

n=1 An = ANAN−1 · · ·A2A1. E0 is an M×M symmetric
orthonormal transform matrix given directly through the 2-D sepa-
rable discrete cosine transform (DCT), where M is the number of
channels, i.e. M = | detM|. Symbols W0, U0 and U

{d}
nd de-

note orthonormal matrices of size M/2 × M/2, which are freely
controlled during the design process. The support region of each
analysis (or synthesis) filter results in 2(Ny + 1)× 2(Nx + 1).

Compared with existing transforms, DirLOTs have a special fea-
ture that the system has an ability to simultaneously satisfy the fixed-
critically-subsampling, overlapping, orthonormal, symmetric, real-
valued and compact-support property with a non-separable basis. As
well, it can hold the trend vanishing moments (TVMs) for any direc-
tion [5]. The directional property works well for diagonal textures
and edges.

2.2. Design Example

In the followings, the decimation matrix is set as M = diag(2, 2) in
order to construct 2-D DWT trees. Figure 2 shows a design example
of DirLOT of polyphase order [Ny, Nx]

T = [4, 4]T . The design
example was obtained through the genetic algorithm function “ga”
of MATLAB R2011b, where the following accumulated error energy
was used as the cost function:

3∑
m=0

∫∫ π

−π

{∣∣∣Rm

(
ejωy , ejωx

)∣∣∣−
∣∣∣Hm

(
ejωy , ejωx

)∣∣∣
}2

dωydωx,

where Rm(ejωy , ejωx) and Hm(ejωy , ejωx) are the frequency re-
sponses of the m-th reference and analysis filter, respectively. For a
given TVM direction φ ∈ [−π

4
, 3π

4
), we define R0

(
ejωy , ejωx

)
by

R0

(
ejωy , ejωx

)
=⎧⎪⎪⎨

⎪⎪⎩

B
(
ejωy , ejωx

)
, φ ∈ {

0, π
2

}
,

B
(
ejωy , ej(ωx−ωy cotφ)

)
, φ ∈ [−π

4
, 0) ∪ (0, π

4
],

B
(
ej(ωy−ωx tanφ), ejωx

)
, φ ∈ [π

4
, π
2
) ∪ (π

2
, 3π

4
],

Data: Noisy image x ∈ R
N

Result: Denoised image x̂ ∈ R
N

Main process;
for k ← 0 to K − 1 do in parallel

yk ← 1
K
Shrink(Φkx);

uk ← ΦT
k yk;

end
x̂ ← ∑K−1

k=0 uk;

Algorithm 1: Heuristic shrinkage algorithm.

where B
(
ejωy , ejωx

)
is a 2-D maximally-flat frequency function

B
(
ejωy , ejωx

)
= 2A

(
ejωy

)
A
(
ejωx

)
defined through a 1-D

maximally-flat frequency function

A
(
ejω

)
=

(
cos

ω

2

)2P
Q−1∑
n=0

d[n]
(
sin

ω

2

)2n

,

where Q and P are the numbers of zeros at ω = 0 and π, re-
spectively, and the coefficients d[n] are given by d[n] = (P−1+n)!

(P−1)!n!

[7]. References Rm

(
ejωy , ejωx

)
for m = 1, 2, 3 are specified by

modulating R0

(
ejωy , ejωx

)
to (ωy, ωx)

T = (π, π)T , (0, π)T and
(π, 0)T , respectively.

Figure 2 shows a design example of P = Q = 3 and φ = π/6
[rad], where [Ny, Nx]

T = [4, 4]T . It is observed that the ampli-
tude response of H0(e

jωy , ejωx) is flat along the direction uT
φ =

(sinφ, cosφ) at ωT = (ωy, ωx) = (0, 0).

3. DENOISING WITH UNION OF DIRLOTS

A single DirLOT has a drawback to represent multiple directional
structures in images. In this section, we propose to construct a union
of tree-structured DirLOTs as a dictionary D and adopt the heuristic
shrinkage and BCR algorithm for solving the BPDN problem [2].

3.1. Union of Directional Symmetric Orthonormal DWTs

A simple way to construct a redundant dictionary is to unite multi-
ple unitary transforms. Shift invariant, i.e. non-subsampling, dictio-
nary construction with orthonormal transforms is a popular example.
The existing techniques, however, do not take account of the direc-
tional property. In this work, we propose to construct a dictionary
by using multiple directional symmetric orthonormal wavelet trans-
forms (DirSOWT) in order to sparsely represent diagonal textures
and edges. Our proposed dictionary D is represented by

D =
[
ΦT

0∪π
2

ΦT
φ1 ΦT

φ2 ΦT
φ3 · · · ΦT

φK−1

]
, (3)

where Φ0∪π
2

is a nondirectional symmetric orthonormal DWT with
the classical two-order vanishing moments (VMs) [8], and Φφ is a
DirSOWT constructed by a DirLOT with the two-order TVMs for
the direction uφ [5]. K denotes the number of the DWTs, i.e. the
redundancy of dictionary D.

3.2. Heuristic Shrinkage (HS)

Since the set of atoms, i.e. column vectors, in D is a normalized
tight frame of R

N and DDT =
∑K−1

k=0 ΦT
k Φk = KI, we can

apply the dictionary D to the heuristic shrinkage. For the sake of
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Data: Noisy image x ∈ R
N

Result: Denoised image x̂ ∈ R
N

Initalization;
i ← 0;
y(0) ← 0;

x̂(0) ← Dy(0) =
∑K−1

k=0 ΦT
k y

(0)
k = 0;

r(0) ← x− x̂(0) = x;
Main iteration to find yT = (yT

0 ,y
T
1 , · · · ,yT

K−1) that
minimizes f(y) = 1

2
‖x−Dy‖22 + λT |y|;

repeat
i ← i+ 1;
u ← x̂(i−1);
z ← r(i−1);
for k ← 0 to K − 1 do

y
(i)
k ← Shrink(y(i−1)

k +Φkz);

u ← u+ΦT
k (y

(i)
k − y

(i−1)
k );

z ← x− u;
end
x̂(i) ← u;
r(i) ← z;

until ‖y(i) − y(i−1)‖22/‖y(i)‖22 < ε;
x̂ ← x̂(i);

Algorithm 2: BCR iterative-shrinkage algorithm.

simplification, let us denote Φ0 = Φ0∪π
2

and Φk = Φφk for k =
1, 2, · · · ,K − 1, respectively. Then, the heuristic shrinkage for D
is written as shown in Algorithm 1 [1], where yk ∈ R

N is the k-th
subvector of y ∈ R

KN , and Shrink() is the vector function that
performs the scalar soft-shrinkage operation

ŷ = Shrink(y) = sign(y) · (|y| − λ)+,

where (·)+ replaces negative elements to zeros and remains posi-
tive elements. The heuristic shrinkage corresponds to the first itera-
tion of the PCD algorithm for solving the BPDN problem in Eq. (1)
and gives appropriate denoising results with simple computation [1].
Notice that Algorithm 1 only takes the average of the results of in-
dependent orthonormal wavelet shrinkage operations.

3.3. BCR Iterative-Shrinkage

The previous heuristic shrinkage approach has a drawback that fine
details are averaged out. This fact is readily understood since a
multiple-DWT dictionary contains multiple scaling filters and the
responsible coefficients of details are diluted out. In order to solve
this dilution problem, we can exploit the redundancy of D and more
sophisticated algorithms can be used for sparser representation [1].

Since our dictionary is a union of unitary matrices, the BCR al-
gorithm is available. Algorithm 2 shows the procedure. The BCR
algorithm iteratively updates the solution of the following subprob-
lem:

ŷk = argmin
yk

1

2

∥∥∥x− x̃−ΦT
k (yk − ỹk)

∥∥∥2

2
+ λT

k |yk|

= argmin
yk

1

2
‖(ỹk +Φkr̃)− yk‖22 + λT

k |yk|

and converges to a solution of Eq. (1), where x̃, ỹk and r̃ are the es-
timations of x̂, yk and r in the previous step, respectively, and λk ∈
R

N is the k-th subvector of λ, i.e. λT = (λT
0 ,λ

T
1 , · · · ,λT

K−1).

Table 1. Adopted transforms and the features.
Abrv. Features

DB5
Daubechies’ least asymmetric compactly-supported

wavelet with five VMs, separable, orthonormal

SON4
Symmetric orthonormal DWT with two VMs of

[Ny, Nx]T = [4, 4]T , nonseparable, nondirectional

NSCT
Nonsubsampled contourlet with 23, 23, 24, 24 directions

in the scales from coarser to finer, near tight, symmetric [9]

UDN4
Union of SON4 and DirSOWTs with two TVMs of

[Ny, Nx]T = [4, 4]T , multidirectional, tight, symmetric
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Fig. 3. Denoising evaluation in terms of SSIM index for “barbara”
with AWGN (σ = 20).

4. EXPERIMENTAL RESULTS

This section shows some experimental results of shrinkage image de-
noising, and verifies the significance of our proposed dictionaryD in
Eq. (3). To assess the performance, it is compared with some other
transforms. The transforms adopted in this experiments are sum-
marized in Tab. 1, where UDN4 denotes the proposed dictionary D
consisting of multiple DirSOWTs of [Ny, Nx]

T = [4, 4]T . We se-
lect 18 angles for φk in Eq. (3) as φk ∈ {− 4π

18
,− 3π

18
,− 2π

18
, · · · 13π

18
}.

Thus, the redundancy results in K = 1 + 18 = 19.
For comparison, we also show the denoising performances

through the Daubechies’ least asymmetric compactly-supported or-
thonormal wavelet with the five-order VMs (DB5) and single sym-
metric orthonormal wavelet Φ0 = Φ0∪π

2
of [Ny, Nx]

T = [4, 4]T

(SON4), where every filter is of size 10× 10. The number of levels
of each DWT is set to seven. For a reference of redundant dictio-
nary, we also show the performance of nonsubsampled contourlet
transform (NSCT) [9]. We adopt the four-scale construction with
23, 23, 24, 24 directions in the scales from coarser to finer, where
the design examples in [9, Sec.III-D] are used1. The redundancy is
1 + 23 + 23 + 24 + 24 = 49.

The task of determining the parameter λ is not trivial. In the fol-
lowings, we first evaluate the proposed denoising by setting λ in the
form λ1w and sweeping the scalar parameter λ, where 1w ∈ R

N

is the vector of which elements at scaling and wavelet coefficient
positions are zeros and ones, respectively. Then, we consider apply-
ing BayesShrink to adaptively determine the threshold values, i.e.
parameter λ [10].

4.1. Denoising Results with Scalar Parameter λ

The eight-bit grayscale image of size 512×512 “barbara” was used
as a test image, where the noise level is σ = 20 and the intensity is
normalized to [0, 1] during the denoising process.

1NSCT toolbox from MATLAB Central
(http://www.mathworks.com/matlabcentral/) was used.
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(a) Original (b) Noisy picture (c) DB5

(d) NSCT (e) UDN4(HS) (f) UDN4(BCR)

Fig. 4. Denoising results. (a)Original picture, (b) Noisy picture with
AWGN (σ = 20), (c)-(f) Denoised pictures.

Table 2. Comparison of SSIM indexes among four transforms for
various pictures and noise levels, where BayesShrink was used to
determine the parameter λ for every case.

σ DB5 SON4
NSCT UDN4
(HS) (HS) (BCR)

goldhill
20 0.726 0.723 0.753 0.746 0.725
30 0.668 0.664 0.666 0.684 0.664
40 0.625 0.621 0.592 0.640 0.621

lena
20 0.794 0.793 0.780 0.814 0.792
30 0.749 0.748 0.693 0.768 0.748
40 0.719 0.720 0.616 0.736 0.720

barbara
20 0.748 0.760 0.767 0.778 0.750
30 0.680 0.671 0.687 0.681 0.685
40 0.626 0.608 0.619 0.623 0.633

baboon
20 0.668 0.714 0.757 0.698 0.730
30 0.558 0.606 0.653 0.591 0.613
40 0.486 0.515 0.566 0.505 0.523

Figure 3 shows a variation of structural similarity (SSIM) inde-
ces against the value of λ. For NSCT, we compensated the thresh-
old λ by using the weight 1/32, 1/8, 1/4 and 1 for the scales from
coarser to finer. The SSIM index is a similarity measure of two im-
ages, which approaches to one when the two images are perceptu-
ally close to each other2 [11]. From Fig. 3, it is observed that NSCT
scores the highest quality in terms of SSIM around at λ = 0.05. On
the other hand, UDN4 is less sensitive to the choice of λ and gives
appropriate performance with both of the HS and BCR approaches.
Figures 4 subjectively compares the denoising performances among
three transforms for “barbara” by using the optimum λ in Fig. 3.

4.2. Denoising Results with BayesShrink

The eight-bit grayscale images of size 512×512 “goldhill,” “lena,”
“barbara” and “baboon” are used as test images with different

2MATLAB function ssim index.m from
http://www.cns.nyu.edu/˜lcv/ssim/ was used.

noise levels σ = 20, 30, 40. Table 2 compares the denoising per-
formance with BayesShrink among four transforms in Tab. 1 [10],
where the robust median estimator was applied to the finest wavelet
coefficients for estimating the noise variance. Every value was ob-
tained by averaging the results of five trials. For NSCT, we compen-
sated the estimated variance by using the weight 1/32, 1/8, 1/4 and
1 for the scales from coarser to finer. From the table, it is observed
that UDN4 with the heuristic shrinkage shows almost the best per-
formance for ”goldhill” and ”lena” among the four transforms. Al-
though NSCT performs better than UDN4 for ”barbara” and ”ba-
boon”, which contain fine textures, the BCR-approach slightly im-
proves the performance of UDN4 and shows the prospective perfor-
mance of other iterative-shrinkage approaches.

5. CONCLUSIONS

A novel image denoising technique was proposed by using Dir-
LOTs. We constructed directional symmetric orthonormal DWTs
and adopted the bases to generate a redundant multi-directional dic-
tionary. Through the application to the BPDN solver, it is verified
that the proposed dictionary yields perceptually preferable results
with a simple computation.
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