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ABSTRACT

The characteristic errors of many digital imaging devices can be
modelled as Poisson-Gaussian noise, the removal of which can be
approached indirectly through variance stabilization. The general-
ized Anscombe transformation (GAT) is commonly used for stabi-
lization, but rigorous studies regarding its unbiased inverse trans-
formation have been neglected. We introduce the exact unbiased
inverse of the GAT, show that it is of essential importance for en-
suring accurate denoising, and demonstrate that our approach leads
to state-of-the-art results. This paper generalizes our earlier work,
in which we presented an exact unbiased inverse of the Anscombe
transformation for the case of pure Poisson noise removal.

Index Terms— denoising, photon-limited imaging, variance
stabilization, Poisson-Gaussian noise.

1. INTRODUCTION

The characteristic errors of many digital imaging devices can be
modelled as Poisson-Gaussian noise, where the Poisson component
accounts for the signal-dependent uncertainty inherent to photon
accumulation, and the Gaussian component accounts for the other
signal-independent noise sources, such as thermal noise.

While the problem of denoising images corrupted by Poisson-
Gaussian noise can be approached by taking the noise statistics di-
rectly into account (e.g., [1]), it can also be approached indirectly
through variance stabilization. This is a three-step process, where
the noisy data is first modified by applying a nonlinear variance-
stabilizing transformation (VST). The resulting data can be treated
as Gaussian with unitary variance, and thus, it can be denoised with
any algorithm designed for the removal of Gaussian noise. Finally,
the desired estimate is obtained by applying an inverse VST to the
denoised data.

The generalized Anscombe transformation (GAT) [2] is com-
monly used for stabilizing the variance of Poisson-Gaussian noise.
While this transformation is well known, its corresponding exact un-
biased inverse transformation has been neglected, even though it is of
essential importance for ensuring accurate denoising results, as we
show in this work. We introduce the exact unbiased inverse of the
GAT for Poisson-Gaussian noise, and in particular, we provide re-
sults also for finite parameter values, while previous works [2] have
considered only the asymptotic case. Moreover, we demonstrate that
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our approach leads to state-of-the-art results. This paper generalizes
our earlier work [3], [4], in which we presented an exact unbiased in-
verse of the Anscombe transformation [5] and showed its importance
in obtaining accurate denoising results for the case of pure Poisson
noise.

The rest of the paper is organized as follows: Section 2 presents
some preliminaries about Poisson-Gaussian noise and about stabiliz-
ing its variance with the GAT. In Section 3, which is the core of our
contribution, we discuss how to construct an exact unbiased inverse
of the GAT and how it behaves asymptotically. Section 4 consists of
experiments, and in Section 5 we discuss the obtained results.

2. PRELIMINARIES

2.1. Poisson-Gaussian noise

Let z̀i, i = 1, . . . , N , be the observed pixel values obtained through
an image acquisition device. We model each z̀i as an independent
random Poisson variable p with an underlying mean value ỳi, scaled
by α > 0 and corrupted by additive Gaussian noise n of mean g and
standard deviation σ̀. In other words,

z̀i = αp+ n, (1)

where p ∼ P (ỳi) and n ∼ N (g, σ̀2). Thus, we can define Poisson-
Gaussian noise as

ηi = z̀i − ỳi. (2)

2.2. Variance stabilization with the generalized Anscombe
transformation

Assuming z̀ is distributed according to (1), we can apply the gener-
alized Anscombe transformation [2]

f(z̀) =

{
2
α

√
αz̀ + 3

8
α2 + σ̀2 − αg, z̀ > − 3

8
α− σ̀2

α
+ g

0, z̀ ≤ − 3
8
α− σ̀2

α
+ g

(3)
to z̀ in order to (approximately) stabilize its variance to unity, i.e.,
var {f(z̀)|ỳ, σ̀} ≈ 1. Note that for the pure Poisson case (i.e.,
α = 1, σ = 0, and g = 0), this coincides with the traditional
Anscombe transformation [5] used for stabilizing data corrupted by
Poisson noise.

The number of parameters which define the transformation (3)
can be reduced significantly by simple variable substitutions

z =
z̀ − g

α
, σ =

σ̀

α
, (4)

which affinely map z̀ to z, a random (non-scaled) Poisson variable
corrupted by additive Gaussian noise of mean 0 and standard devia-
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tion σ. In particular, the probability distribution of z is

p (z | y, σ) =
+∞∑
k=0

(
yke−y

k!
× 1√

2πσ2
e
− (z−k)2

2σ2

)
. (5)

Thus, according to (3), z can be stabilized with the transformation

fσ(z) =

{
2
√

z + 3
8
+ σ2, z > − 3

8
− σ2

0, z ≤ − 3
8
− σ2

. (6)

In other words, for any of the parameters α and g, we can stabilize
the variance of z̀ by means of variable substitutions (4), followed by
the transformation (6). Then, after applying an inverse transforma-
tion I of (6) to the denoised data D, we simply return to the original
range by inverting (4), i.e., setting ŷ = αI (D)+g. Note that (4) and
its inverse are affine, so they do not introduce any bias in the estima-
tion. Thus, in the rest of the paper, we consider only the stabilization
of z, which is the observed data after the variable substitution (4),
and by GAT we refer to the corresponding transformation (6).

Figure 1(a) shows the forward transformation (6) for the param-
eter values σ = 0.01, 1, 2, 3, and the corresponding standard devi-
ations of the stabilized variables fσ (z) are shown in Figure 1(b).
Note that there is a particular overshoot in the standard deviation
at around σ = 2 for low values of y, but it begins to settle down
towards the desired value 1 as σ increases.

3. EXACT UNBIASED INVERSE TRANSFORMATION

3.1. Definition

Assuming the denoising of fσ(z) was successful, we may treat the
denoised data D as the expected value E{fσ (z) | y, σ}. Then, the
exact unbiased inverse of the generalized Anscombe transformation
(6) is in fact a family of inverse transformations Iσ , parametrized
by σ, that maps the values E{fσ (z) | y, σ} to the desired values
E{z | y, σ}:

Iσ : E {fσ (z) | y, σ} �−→ E {z | y, σ} . (7)

Since we trivially know E {z | y, σ} = y for any given y, construct-
ing the inverse requires us to compute the values E {fσ (z) | y, σ},
analogously to how the exact unbiased inverse of the Anscombe
transformation was computed in [3]. In this more general case, it
is computed as

E{fσ (z) | y, σ} =

∫ +∞

−∞
fσ (z) p (z | y, σ) dz (8)

=

∫ +∞

−∞
2

√
z +

3

8
+ σ2

+∞∑
k=0

(
yke−y

k!
√
2πσ2

e
− (z−k)2

2σ2

)
dz.

The exact unbiased inverse transformations Iσ for the parameter val-
ues σ = 0.01, 1, 2, 3 are shown in Figure 1(c), along with the corre-
sponding algebraic inverses of (6) for the comparison.

3.2. Asymptotic behaviour

As we explicitly construct the inverse mapping (7) only for a finite
grid of values, it is also of interest to examine the asymptotic be-
haviour of Iσ . When the standard deviation σ of the Gaussian noise
component is large, we may formulate Iσ in terms of the exact un-
biased inverse Anscombe transformation I0 [3] as

Iσ ≈ I0 − σ2. (9)

Likewise, when σ is very small, we may do the same approximation.
For the detailed derivation of this approximation and analysis of its
accuracy, we refer the reader to [6].

3.3. Practical implementation

Taking into account the asymptotic result (9), and given that I0 is
already available (either in accurate numerical form or as closed-
form analytical approximation [3], [4]), to compute Iσ it is suffi-
cient to tabulate E{fσ(z) |y, σ} (8) only for a finite grid of val-
ues, and resort to interpolation (between the grid values) and to
the asymptotic form I0(D) − σ2 (outside of the grid). In partic-
ular, for our experiments, we considered 96 non-equispaced val-
ues σ ∈ {0.01, . . . , 50} and 1199 non-equispaced values of y ∈
{0, . . . , 200} and calculated E{fσ(z) |y, σ} on such 96×1199 grid.
Our Matlab software implementing this inverse transformation is
available online at http://www.cs.tut.fi/˜foi/invansc.

4. EXPERIMENTS

We evaluate the denoising performance associated with the pro-
posed exact unbiased inverse Iσ by considering the Cameraman
(256×256) and Fluorescent Cells (512×512) test images. For both
images, we scale the original image to eight different peak values (1,
2, 5, 10, 20, 30, 60, 120), and corrupt them with Poisson-Gaussian
noise (σ = peak/10), as was done in [1].

We denoise each image with the three-step variance stabilization
approach explained in Section 1, using either BM3D [7] or BLS-
GSM [8] as the Gaussian denoising algorithm, and inverting the de-
noised data with each of the following transformations: the exact un-
biased inverse Iσ , the asymptotic inverse Iasy (D) = 1

4
D2− 1

8
−σ2,

or the algebraic inverse Ialg (D) = 1
4
D2 − 3

8
− σ2. For compari-

son with the direct approaches, we also denoise each image with the
state-of-the-art UWT/BDCT PURE-LET method proposed in [1].
The results are presented in Table 1, where each PSNR value is an
average of ten individual denoising results (performed on ten random
realizations of the Poisson-Gaussian noise).

We see that the proposed method is competitive with the
UWT/BDCT PURE-LET algorithm, outperforming it in many
cases, in particular when variance stabilization is combined with
the BM3D algorithm, which represents the state of the art in addi-
tive white Gaussian noise removal. Moreover, there are no major
declines in performance for the low-intensity cases, which demon-
strates the fact that the poor performance shown in earlier works
(e.g., [1]) is not simply due to inadequate variance stabilization
associated with the GAT, but mostly a consequence of using an
improper inverse transformation. In particular, we see that for the
low-intensity cases it is clearly not reasonable to use either the
asymptotic inverse or the algebraic inverse; instead, the proposed
exact unbiased inverse can be used everywhere.

Figures 2–3 present visual comparisons for Cameraman (peak
= 80, σ = 3), corroborating the observed good performance of the
proposed denoising method. Finally, Figure 4 shows the denoising
results for a low-intensity Boat image (peak = 1.5, σ = 0.1), includ-
ing a comparison of the different inverses. This clearly visualizes
the previously noted importance of applying a proper inverse trans-
formation to the denoised data.

5. DISCUSSION AND CONCLUSIONS

We have generalized our earlier work [3], [4] by proposing an ex-
act unbiased inverse of the generalized Anscombe transformation
for Poisson-Gaussian noise. We showed that the denoising perfor-
mance associated with this inverse, in conjunction with a state-of-
the-art Gaussian noise removal algorithm, is competitive with that
of a state-of-the-art algorithm designed specifically for the removal
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(a) (b) (c)

Fig. 1: The generalized Anscombe transformation (6) for the parameter values σ = 0.01, 1, 2, 3. (a) The forward transformations fσ (z), (b)
The standard deviations of the stabilized variables fσ (z), (c) The exact unbiased inverse transformations Iσ , compared with the corresponding
algebraic inverses of (6).

(a) (b) (c) (d)

Fig. 2: The denoising of Cameraman (256×256). (a) Original image, (b) Noisy image (peak = 80, σ = 3, PSNR = 21.38 dB), (c) Denoised
with BM3D and the exact unbiased inverse Iσ (PSNR = 30.15 dB), (d) Denoised with UWT/BDCT PURE-LET (PSNR = 29.68 dB).

Table 1: A comparison of the denoising performance (PSNR, dB) of several denoising algorithms and inverse transformations, using various
peak intensities and various standard deviations σ of the Gaussian noise component. The results are averages of ten independent realizations.

Image Peak σ Noisy GAT + BM3D GAT + BLS-GSM UWT/BDCT
Iσ Iasy Ialg Iσ Iasy Ialg PURE-LET [1]

1 0.1 3.20 20.23 15.55 15.72 18.46 14.56 15.40 20.35
2 0.2 6.12 21.93 20.70 18.24 20.28 19.41 17.36 21.60
5 0.5 9.83 24.09 24.00 22.36 23.01 22.93 21.29 23.33

Cameraman 10 1 12.45 25.52 25.52 24.80 24.36 24.35 23.62 24.68
(256×256) 20 2 14.76 26.77 26.75 26.48 25.58 25.53 25.26 25.92

30 3 15.91 27.30 27.29 27.13 26.20 26.16 26.01 26.51
60 6 17.49 28.07 28.06 28.01 27.02 26.98 26.93 27.35
120 12 18.57 28.57 28.55 28.54 27.57 27.52 27.51 27.89

1 0.1 7.22 24.54 13.86 20.83 22.35 13.47 20.01 25.13
2 0.2 9.99 25.87 20.99 21.96 24.20 20.25 21.23 26.25
5 0.5 13.37 27.45 26.93 24.80 26.99 26.52 24.25 27.60

Fluorescent Cells 10 1 15.53 28.63 28.61 27.20 28.05 28.03 26.50 28.59
(512×512) 20 2 17.21 29.65 29.64 29.09 29.05 28.89 28.28 29.47

30 3 17.97 30.16 30.15 29.86 29.74 29.65 29.33 29.84
60 6 18.86 30.77 30.77 30.68 30.52 30.48 30.38 30.42
120 12 19.39 31.14 31.14 31.11 30.91 30.87 30.85 30.70
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Fig. 3: A 100×100 section of each of the images in Figure 2. (a) Original image, (b) Noisy image (peak = 80, σ = 3), (c) Denoised with
BM3D and the exact unbiased inverse Iσ , (d) Denoised with UWT/BDCT PURE-LET.

(a) (b) (c)

(d) (e) (f)

Fig. 4: The denoising of Boat (512×512). (a) Original image, (b) Noisy image (peak = 1.5, σ = 0.1, PSNR = 4.64 dB), (c) Denoised with
BM3D and the asymptotic inverse Iasy (PSNR = 20.18 dB), (d) Denoised with BM3D and the algebraic inverse Ialg (PSNR = 17.34 dB), (e)
Denoised with BM3D and the exact unbiased inverse Iσ (PSNR = 22.30 dB), (f) Denoised with UWT/BDCT PURE-LET (PSNR = 22.31 dB).

of Poisson-Gaussian noise. Further, we observed that for low peak
intensities, the performance gain obtained by using the exact un-
biased inverse instead of the algebraic or the asymptotic inverse is
especially significant. In other words, we showed that the poor de-
noising performance shown in earlier works is not simply due to the
inability of the GAT to stabilize the noise variance adequately, but
mostly due to applying an unsuitable inverse transformation.

For rigorous mathematical derivations and proofs concerning the
results presented here, we refer the reader to our forthcoming journal
paper [6], where we also show that the exact unbiased inverse is
optimal in a maximum likelihood sense, and we further introduce a
closed-form approximation of this inverse.
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