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ABSTRACT
Several Total Variation (TV) regularization methods have

recently been proposed to address denoising under mixed

Gaussian and impulse noise. While achieving high-quality

denoising results, these new methods are based on compli-

cated cost functionals that are difficult to optimize, which

negatively affects their computational performance.

In this paper we propose a simple cost functional consist-

ing of a TV regularization term and �2 and �1 data fidelity

terms, for Gaussian and impulse noise respectively, with lo-

cal regularization parameters selected by an impulse noise

detector. The computational performance of the proposed

algorithm greatly exceeds that of the state of the art algo-

rithms within the TV framework, and its reconstruction qual-

ity performance is competitive for high noise levels, for both

grayscale and vector-valued images.

Index Terms— Image Restoration, Total Variation, Gaus-

sian noise, Impulse noise

1. INTRODUCTION

Acquired digital images are frequently subject to additive

Gaussian noise [1, Ch. 7]; if we then add the degradation due

to transmission errors, the observed image will be corrupted

by Gaussian with salt-and-pepper (constant value impulse)

noise or random-value impulse noise. Given u∗ and b, the

original and observed images respectively, then the mixed

Gaussian and impulse noise model is summarized by

v = u∗ + η

b(k) =

{
r(k), with probability p

v(k), with probability 1 − p
(1)

where v represents the original image u∗ corrupted with ad-

ditive Gaussian noise η, which is assumed to be a zero mean

Gaussian random variable (μη = 0) with unknown variance

σ2
η, and b(k) represents the elements of b. r(k) is either the

salt-and-pepper noise or the random value impulse noise; for

the former case, r(k) = cmin or r(k) = cmax with probabil-

ity p1 and p2 respectively (p = p1 +p2) and for the latter case

r(k) is drawn with a uniform distribution in [cmin, cmax].

A number of algorithms, some of which are based on TV

regularization, have recently been proposed for denoising of

images subject to the mixed noise model (1) [2, 3, 4, 5, 6].

The key idea of of the non-TV based methods is to use a two-

phase approach: detect the outlier pixels before proceeding

with the filtering phase. For example, [2] introduced an uni-

versal noise removal filter that first detect the impulse cor-

rupted pixels, and estimates its local statistics and incorporate

them into the bilateral filter [7], resulting in the trilateral fil-

ter. In [5] somewhat similar ideas where used to develop a

similarity principle which in turn drives the weights of the

“mixed noise filter”; the reconstruction performance (as re-

ported in [5]) outperforms the trilateral filter.

Within the TV framework, most of the algorithms also

start with an outlier detection pre-processing phase followed

by a denoising phase. The approach in [3] is based on two

augmented cost functionals ([3, eqs. (15)-(16)]) which have

to be chosen depending on the noise characteristics; the

reconstruction performance is competitive, but its compu-

tational performance is extremely poor. In [4] the compu-

tational performance of [3] is improved, although it still is

highly dependent on the noise level, specially for high noise

levels; In [6] an �1-�0 minimization approach was proposed,

resulting in a three-phase algorithm; reconstruction quality

results and computational performance are quite good when

compared with published works (and could be considered

state-of-the-art), but the proposed cost functional ([6, eq.

(5)]) is complicated and has several regularization parameters

which have to be hand-picked, and the use of a dictionary

learning second phase affects the overall computational per-

formance. Finally we mention that [3, 4] only applies to

grayscale images whereas [6] also applies to color images.

In this paper we propose a simple cost functional to

denoise images corrupted with the mixed noise model. It

is computationally efficient, and gives competitive recon-

struction quality, particularly for high noise levels, for both

grayscale and color images. The outline of the paper is as

follows: in Section 2 we give a brief description of the meth-

ods used to develop the proposed algorithm. In Section 3 we

present our proposed algorithm that is based on the Iterative

Reweighted Norm (IRN) algorithm [8] and its extensions
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[9, 10, 11]; in Section 4 we provide our computational results

where we compare our propose algorithm with [4, 6]; finally

in Section 5 we give our concluding remarks.

2. PRELIMINARIES

The standard �2-TV regularized solution of the inverse prob-

lem involving the observed image data b is the minimum of

the functional

T (u) =
1
p

∥∥∥∥u − b
∥∥∥∥

p

p

+
λ

q

∥∥∥∥
√∑

n∈C

(Dxun)2 + (Dyun)2
∥∥∥∥

q

q

,

(2)

with C = {1} (i.e. grayscale images) p = 2 and q = 1, as

described in [12]. The fidelity term Fp(u) = 1
p‖u − b‖p

p

is determined by the noise model (p = 2 for the Gaus-

sian noise model) and the regularization term Rq(u) =
1
q

∥∥∥∥
√∑

n∈C

(Dxun)2 + (Dyun)2
∥∥∥∥

q

q

with q = 1 is the dis-

cretization of |∇u|, as originally proposed in [12] (Rq(u)
is also a valid the discretization of |∇u| for coupled chan-

nels). Dx and Dy represent horizontal and vertical dis-

crete derivative operators respectively. It is assumed that

2-dimensional images are represented by 1-dimensional vec-

tors: un (n ∈ C) is a 1-dimensional (column) or 1D vector

that represents a 2D grayscale image obtained via any or-

dering (although the most reasonable choices are row-major

or column-major) of the image pixels. Furthermore, for

C = {1, 2, 3} (i.e. three-channel color images) we have

that u = [(u1)T (u2)T (u3)T ]T is a 1D (column) vector that

represents a 2D color image.

The original TV method has been extended into a more

general technique for inverse problems including deblurring,

blind deconvolution and inpainting [13]. It has also been

extended to handle several noise models, such the salt-and-

pepper noise model, the non-homogeneous Poisson noise

model and the Speckle (multiplicative) noise model (see

among several others [14, 15, 16] respectively).

2.1. IRN approach

The Iteratively Reweighted Norm (IRN) approach was orig-

inally developed to restore images corrupted with Gaussian

noise or salt-and-pepper noise for grayscale images [8], and

then extended to handle vector-valued (e.g. color) images [9]

as well as other noise models such the Speckle noise model

[10] and the non-homogeneous Poisson noise model [11]. In

what follows we provide a brief description of the original

IRN algorithm.

The IRN approach represents the �p and �q norms in (2)

by the equivalent weighted �2 norms (see [9] for details):

T (k)(u) =
1
2

∥∥∥∥W (k)
F

1/2
(Au − b)

∥∥∥∥
2

2

+
λ

2

∥∥∥∥W (k)
R

1/2
Du
∥∥∥∥

2

2

+ζ

(3)

where u(k) is a constant representing the solution of the pre-

vious iteration, ζ is a constant value, IN is a N × N iden-

tity matrix, ⊗ is the Kronecker product, C = {1}, N = 1
(grayscale) or C = {1, 2, 3}, N = 3 (vector-valued) and

W
(k)
F = diag

(
τF,εF

(Au(k) − b)
)

, (4)

D = IN ⊗ [DxT DyT ]T W
(k)
R = I2N ⊗ Φ(k), (5)

Φ(k) = diag

(
τR,εR

(∑
n∈C

(Dxu(k)
n )2 + (Dyu(k)

n )2
))

.

(6)

The functions

τF,εF
(x) =

{ |x|p−2 if |x| > εF

εp−2
F if |x| ≤ εF ,

, (7)

and

τR,εR
(x) =

{ |x|(q−2)/2 if |x| > εR

ε
(q−2)/2
R if |x| ≤ εR,

(8)

are defined to avoid numerical problems when p, q < 2 and

Au(k) − b or
∑
n∈C

(Dxu(k)
n )2 + (Dyu(k)

n )2 has zero-valued

components.

3. PROPOSED ALGORITHM

We will assume that N , the set of outliers (pixels corrupted

with impulse noise) is known. For the scope of this paper,

the set N will be estimated either (i) via the adaptive median

filter [17] for the salt-and-pepper case, or (ii) via the direc-

tional weighted median filter [18] for the random value im-

pulse noise case. Using set N as given information, we pro-

pose the cost functional defined by

T (u) =
1

λO

∥∥∥∥Λ·(u−b)
∥∥∥∥

1

+
1

2λG

∥∥∥∥Λ̃·(u−b)
∥∥∥∥

2

2

+Rq(u), (9)

for denoising images corrupted with mixed noise, where Λ =
diag(I[u∈N ]), Λ̃ = 1 − Λ, I[.] is the indicator function, 1
represents an identity matrix (with the proper dimensions),

Rq(u) with q = 1 is defined as in (2) and λO and λG are the

regularization parameters used on the outliers and Gaussian

corrupted pixels respectively.

Defining ΛO = diag(1/λO) ∗ Λ and similarly Λ̃G =
diag(1/λG) ∗ Λ̃, then (9) can be written as

T (u) =
∥∥∥∥ΛO · (u−b)

∥∥∥∥
1

+
1
2

∥∥∥∥ΛG · (u−b)
∥∥∥∥

2

2

+Rq(u). (10)

Using the same idea as for the IRN algorithm (see Section

2.1), we can replace the �1-norm term in (10) by a prop-

erly weighted �2-norm and combine the two resulting �2-norm

terms into one:

T (k)(u) =
1
2

∥∥∥∥W (k)
F

−1/2 · (u − b)
∥∥∥∥

2

2

+ Rq(u), (11)
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where WF = ΛG + Ω(k)
F

−1/2
ΛO, and Ω(k)

F

−1/2
is a diagonal

weighting matrix defined as in (4); here we stress that ΛO and

ΛG induce a partition on the set of pixels. It is interesting to

notice that (11) resembles the original TV problem, except in

the form of the weighting matrix W
(k)
F

−1/2
. Furthermore, for

a given weighting matrix, (11) can be easily solved since the

regularization term can also be approximated by a quadratic

term, as for the IRN algorithm. The final solution is computed

iteratively.

4. EXPERIMENTAL RESULTS

We compare our propose algorithm with two state of the art

methods: CCN (Cai-Chan-Nikolova, [4]) and XZYN (Xia-

Zeng-Yu-and-Ng, [6]). We use the peak signal-to-noise ratio

PSNR = 10 log10
N(max {u∗})2

‖u−u∗‖2
2

as one of the reconstruction

quality metrics to match the results presented in [4, 6]; we also

provide the SNR and SSIM [19] metrics whenever possible.

Due to space constraints we only present results for the

grayscale, 512 × 512 pixel, Lena image for Gaussian with

salt-and-pepper noise case and for the Gaussian with random

value impulse noise case, although results for several other

images and cases may also be generated using the the NUMI-

PAD (v. 0.30) distribution [20], an implementation of IRN

and related algorithms. All simulations have been carried

out using the above mentioned Matlab-only (version R2009b)

code on a 1.73GHz Intel core i7 CPU laptop (L2: 6144K,

RAM: 6G); this software/hardware setup is comparable with

that used in [6], allowing us to present rough comparison of

our algorithm with those presented in [6].

Image
Noise SNR PSNR SSIM Time (s.)

σ p Ours [6](∗) [4](∗) Ours Ours [6](∗) [4](∗) Ours

Lena

5
255

0.3 20.11 36.20 34.15 34.64 0.89 338 93 34.5

0.5 18.21 33.93 32.30 32.75 0.87 – – 34.4

0.7 15.66 30.76 29.73 30.20 0.83 247 119 26.9

10
255

0.3 17.82 33.19 31.33 32.36 0.83 – – 36.4

0.5 16.61 31.51 29.88 31.14 0.81 – – 35.2

0.7 14.54 28.98 27.75 29.07 0.78 – – 30.1

15
255

0.3 16.03 31.49 29.67 30.56 0.76 215 143 32.8

0.5 15.27 29.95 28.42 29.80 0.75 – – 38.8

0.7 13.80 27.53 26,46 28.33 0.74 176 248 41.8

Table 1. Experimental results for the Gaussian (σ) with salt-

and-pepper (p) noise case for the Lena (512× 512 grayscale)

image. (∗) Results taken from [6, Tables 7 and 10].

In Tables 1 and 2 we summarize the results for the Gaus-

sian with salt-and-pepper and Gaussian with random value

impulse noise cases respectively. The computational perfor-

mance of our proposed algorithm is almost independent of

the noise level and/or mixture kind; this is not the case for the

CNN and XZYN algorithms. Moreover our computational

performance is twice as fast as that of CNN, and an order

of magnitude faster than XZYN for several cases. However,

for the Gaussian with salt-and-pepper noise case our recon-

struction quality results are, on average, about 1dB (PSNR)

lower than XZYN (even though they are slightly better than

CCN); similarly for the Gaussian with random value impulse

noise case our reconstruction quality results are on average 1

dB and 2 dB (PSNR) below of those reported by CCN and

XZYN respectively.

Since our proposed algorithm can be applied to vector-

valued images we present a color reconstruction example: in

Figure 1 we show two corrupted Lena (512 × 512) images:

Gaussian (σ = 15/255) with salt-and-pepper (p = 0.7) noise

and Gaussian (σ = 15/255) with random-value impulse (p =
0.3) noise and their restored versions.

Image
Noise SNR PSNR SSIM Time (s.)

σ p ours [6](∗) [4](∗) Ours Ours Ours

Lena

5
255

0.1 18.28 34.98 33.78 32.81 0.85 34.8

0.2 16.54 33.64 32.37 31.07 0.80 33.5

0.3 14.90 32.04 31.21 29.43 0.75 34.9

10
255

0.1 16.66 32.75 31.01 31.19 0.79 32.6

0.2 15.17 31.66 30.33 29.70 0.73 29.7

0.3 13.55 30.42 29.42 28.08 0.66 32.0

15
255

0.1 15.31 30.85 29.34 29.84 0.73 35.8

0.2 13.90 29.98 28.78 28.43 0.67 33.5

0.3 12.35 29.11 28.20 26.88 0.60 35.1

Table 2. Experimental results for the Gaussian (σ) with ran-

dom value impulse (p) noise case for the Lena (512 × 512
grayscale) image. (∗) Results taken from [6, Table 8].

5. CONCLUSIONS

We have proposed a simple yet effective TV cost functional

for image restoration under mixed Gaussian and impulse

noise. The computational performance of the proposed al-

gorithm greatly exceeds that of the state of the art algo-

rithms [4, 6], being an order of magnitude faster for several

cases. There is, however, a trade-off to be made for the

superior computational performance: for the Gaussian with

salt-and-pepper noise case our reconstruction quality results

are slightly better than [4], but slightly worse than [6], and

for the Gaussian with random value impulse noise case our

reconstruction quality results are slightly worse than those

reported by both [4] and [6].

As part of our on-going work, we highlight that our re-

construction quality results could be improved by means of a

spatially (and automatic) adaptation scheme for the regular-

ization parameters, such the one used in [11].
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(a) (b)

(c) (d)

Fig. 1. Color Lena (512 × 512) corrupted with (a) Gaus-

sian (σ = 15/255) with salt-and-pepper (p = 0.7) noise,

PSNR=6.70 dB and with (b) Gaussian (σ = 15/255) with

random-value impulse (p = 0.3) noise, PSNR=13.63 dB; (c)

and (d) are the denoised version of (a) and (b) with PSNR

equal to 27.82 dB and 26.77 dB respectively.
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