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ABSTRACT

In this paper, we propose a spatially-varying deblurring
method to remove the out-of-focus blur. Our proposed
method mainly contains three parts: blur map generation,
image deblurring, and scale selection. First, we derive a blur
map using local contrast prior and the guided filter. Second,
we propose our image deblurring method with L1-2 opti-
mization to obtain a better image quality. Finally, we adopt
the scale selection to ensure our output free from ringing
artifacts. The experimental results demonstrate our proposed
method is promising.

Index Terms— out-of-focus blur, spatially-varying de-
blurring, L1-2 optimization, guided blur map.

1. INTRODUCTION

In the past decade, digital photographs become necessities
in our daily life, especially as digital cameras and camera
phones are widely used. Due to the physical requirement,
photographs have some trade-offs between exposure-time,
aperture-size, and depth-of-field during image acquisition.
Although a longer exposure-time can guarantee the image
sensors to capture enough light, the photograph taken by a
longer exposure-time may lead to a motion-blurred image and
hard to be reconstructed[1]. On the other hand, although us-
ing a bigger aperture can prevent the motion-blur and capture
enough light, the out-of-focus blur and the limited depth-of-
field become the main drawbacks. In this paper, we propose
a software-based method to remove the spatially-varying
out-of-focus blur while extend the depth-of-field.

In 2007, Bae et al. calculated the second derivatives of
input image to extract the blur scale on edge. They also bor-
rowed the colorization method to propagate the blur scale and
obtain a 2-D blur map (defocus map). However, the coloriza-
tion method cannot grantee a correct blur map, Bae et al.’s
method is not sufficient for image reconstruction[2]. In 2009,
Tai et al. obtained their blur map by using their local contrast
prior. They did not estimate the in-focus parameter so as to
require an interactive input for their blur map[3].

Fig. 1. Flowchart of our proposed method. We reconstruct
l∗(x, y) from a spatially-varying blurry input b(x, y) by using
blur map generation, L1-2 Deblurring, and scale selection.

In 2011, Trentacoste et al. estimated their blur map by
comparing the edges inside the scale-space of the input image.
They proposed their idea for blur-aware down-sampling, not
for image reconstruction. Kee et al. proposed their spatially-
varying deblurring for optical blur, but they did not deal with
the problems caused by the out-of-focus blur[4]. Besides,
Zhuo et al. re-blurred the image to extract the blur scale on
edges. They presented their blur map and the results for de-
focus magnification, but they did not show the all-in-focus
results[5].

Our proposed method can be viewed as three parts. First,
we estimate our blur map by combining the modified local
contrast prior and the guided filter. Second, we deblur the
whole out-of-focus blurry input with L1-2 optimization scale
by scale, and obtain a set of deblurred images as the candi-
dates of our output. In the last step, according to our blur
map, we select the deblurred pixels to reconstruct our all-
in-focus output image. The experimental results show that
our proposed method outperforms than the existing space-
invariant deblurring methods proposed by Shan et al.[6] and
Xu et al.[7], respectively. Besides, our proposed method still
outperforms than the spatially-varying method using the cas-
caded combination of Bae et al.’s blur map and Chan et al.’s
image deblurring method[8].
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2. OUR PROPOSED METHOD

We first estimate our blur map by using the modified local
contrast prior and the guided filter. Second, we propose an
image deblurring method optimized with both discrete total
variation (TV) and Tikhonov-like regularizer. With this L1-2
optimization, we deblur the input image to obtain a set of de-
blurred images. In the final step, we adopt the scale selection
to select the deblurred pixels to fill in the final all-in-focus
output. The flowchart is show in Fig. 1 while the details are
introduced as below:

2.1. Blur map generation

For the latent edge signal l(x), we can model it as

l(x) = A · u(x) +B (1)

where u(x) is the step function, A is the amplitude, B is the
offset, and the edge is located at x = 0.

Suppose the edge signal l(x) suffers the out-of-focus blur,
we can approximate the blurry signal b(x) as the convolution:

b(x) = l(x)⊗ g(x, σ) (2)

where g(x, σ) is the Gaussian function with its standard devi-
ation σ:

g(x, σ) =
1√
2πσ

exp(−x2

2σ
) (3)

In order to extract the blur scale σ, we reference the local
contrast prior LC(x) proposed in [3] and then modify it using
the edge properties derived from [5]. Following the previous
equations, we can obtain the gradient of the blurry edge and
then substitute it into LC(x). We have

∇b(x) = ∇(l(x)⊗ g(x, σ)) = A · g(x, σ) (4)

and

LC(x) =
max |∇b(x′)|

max b(x′)−min b(x′)
(5)

≈ 1√
2πσ

max | exp(− x2

2σ2
)| (6)

where x′ is the neighborhood of x.
Since max | exp(0)| = 1 at the edge location (x = 0), we

can easily adopt |∇b(x, y)| =
√
∇b2x +∇b2y from x- and y-

directions to obtain our 2-D blur map as follows:

σ(x, y) =
1√

2πLC(x, y)
=

0.3989

LC(x, y)
(7)

where LC(x, y) = max |∇b(x′,y′)|
max b(x′,y′)−min b(x′,y′) and (x′, y′) is the

neighborhood of (x, y) within a local window.
Moreover, in order to remove the ambiguity around edges

and the noise of our blur map, we adopt the original blur im-
age as the guided image to lead us to a better blur map after
guided filtering [9].

σ(x, y)← GF{b(x, y), σ(x, y), r, ε} (8)

2.2. Image deblurring with L1-2 optimization

After generating the blur map, we propose our image deblur-
ring method with L1-2 optimization to obtain the deblurred
images for all-in-focus image reconstruction.

Our image deblurring with L1-2 optimization adopts both
Tikhonov-like regularizer and TV regularizer. Consider b be
the blurry image, Gσ represent a Gaussian blurring operator
with blur scale σ, lσ be the corresponding deblurred n × n
gray-scale image, and r be additive noise.

b = Gσlσ + r (9)

Since b is the input blurry image, b is given. Suppose Gσ is
determined, we can recover lσ using our proposed model:

min
lσ

μ

2
‖Gσlσ−b‖22+α·

n2∑
i=1

‖Dilσ‖+ (1− α) ·
n2∑
i=1

‖Dilσ‖22
(10)

where Dilσ denotes the discrete gradient of lσ at pixel i,∑ ‖Dilσ‖ is the TV regularizer of lσ , and
∑ ‖Dilσ‖22 is the

Tikhonov-like regularizer. Besides, μ is a parameter, and
0 ≤ α ≤ 1.

Similar to Wang et al’s [10], we adopt variable-splitting
and penalty techniques for our L1-2 optimization. At each
pixel, we introduce an auxiliary variable wi to transfer Dilσ
outside the non-differentiable term ‖·‖ and penalize the differ-
ence between wi and Dilσ . We can yield the approximation
model as follows:

min
w,lσ

μ

2
‖Gσlσ − b‖2

2
(11)

+ α · (

n2∑

i=1

‖wi‖+
β

2

n2∑

i=1

‖wi −Dilσ‖
2

2
) + (1− α) ·

n2∑

i=1

‖Dilσ‖
2

2

with a large enough penalty parameter β such that wi →
Dilσ and the minimization question described in equation
(11) is modified into a penalty function in degree (w, lσ).

We adopt an alternating minimization algorithm to min-
imize the penalty function with respect to either wi and lσ .
For a fixed lσ , only the middle two term related to wi are
separable with respect to wi, so minimizing equation (11) is
equivalent to solving the following equation:

min
wi

‖wi‖+ β

2

n2∑
i=1

‖wi −Dilσ‖22 (12)

for which the unique solver is given using matrix calculus by
the following formula:

wi = max{‖Dilσ‖ − 1

β
, 0} Dilσ
‖Dilσ‖ (13)

where i = 1, 2, · · · , n2 and the convention (0/0) = 0. In
the other hand, for a fixed wi, we can easily minimize lσ by
solving the quadratic equation described in equation (14).

min
lσ

μ

2
‖Gσlσ−b‖22+

αβ

2

n2∑

i=1

‖wi −Dilσ‖
2

2+(1−α)·

n2∑

i=1

‖Dilσ‖
2

2

(14)

1070



To solve equation (14), we can obtain a closed-form solution:

(
μ

2
GT

σGσ + (
αβ

2
+ 1− α)DT

i Di)lσ =
αβ

2
DT

i wi +
μ

2
GT

σ b

(15)
Assume lσ is under the periodic boundary condition, we have
Di and GT

σGσ are all block circulant. Therefore, we can uti-
lize 2D discrete fourier transform F to replace the huge ma-
trix calculation. Using the convolution theorem of Fourier
transforms, we can obtain lσ from the digital filter:

lσ = (16)

F−1{
(αβ

2
)F (Di)

∗ ◦ F (wi) + (μ
2
)F (Gσ)∗ ◦ F (b)

((αβ
2
) + (1− α))F (Di)∗ ◦ F (Di) + (μ

2
)F (Gσ)∗ ◦ F (Gσ)

}

where “∗” denotes complex conjugacy, “◦” denotes compo-
nentwise multiplication, and the division is also component-
wise. In our alternating minimization algorithm, for given b,
Gσ , α, β, and μ, we can
(i) initialize b = lσ ,
(ii) iteratively compute w according to equation (13) for fixed
lσ , and compute lσ according to equation (16) for fixed w.
Until the minimizing penalty function reaches its conver-
gence, we can obtain the final deblurred image lσ . Using
different blur scales, we can obtain N deblurred image can-
didates {lσ1

, lσ2
, · · · , lσN

}for image reconstruction.

2.3. Scale Selection for image reconstruction

In previous subsection, we generate our blur map and obtain
our deblurred images with L1-2 optimization. We quantize
the continuous blur map to discrete blur scales from σ1, σ2,
to σN with the step size q. Afterwards, we reconstruct our
all-in-focus image as follows:

l∗(x, y) =
∑
(x,y)

lσ∗(x,y)(x, y) (17)

where σ∗(x, y) is the biggest quantized blur scale close to
σ(x, y). Since σ∗(x, y) ≤ σ(x, y), we can suppress the ring-
ing artifacts which are caused by non-regularity [11].

3. EXPERIMENTAL RESULTS

First, we examine the performance of our image deblurring
with L1-2 optimization. We use the following six images
from USC SIPI database as reference images: Girl (Lena),
Stream and bridge, Baboon, Man, Peppers, and f16. 2D Gaus-
sian blur with standard variation (blur scale) set at 4 pixels is
applied to the reference images. Then, we adopt TwIST [12],
FTVd [10], deconvtv [8], and our L1-2 model to delur the
blurred images with deblurring scales at 2, 4, 6, and 8 pix-
els. The parameters of our L1-2 method are set as follows:
μ = 18, α = 0.8, and β is a updating parameter which its
initial value equals 1. The performance is measured by SSIM
and PSNR. From Figure 3, we can see that our L1-2 method
has the same performance when the images are deblurred at
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Fig. 2. Comparison of the average performance of the four
deblurring algorithms with different blurring scale estimation.
The blue, green, red, and black curves correspond to our L1-2,
FTVd [10], TwIST [12], and deconvtv [8], respectively.

the true blurring scale. We can also obverse that our L1-2
method outperforms than the compared methods when the
blurring scale is incorrect (over-estimated).

Second, we adopt equation (7) to obtain the continuous
blur map σ(x, y) with a local window of size 11 × 11 and
set γ = 10,ε = 0.01 for guided image filtering. Afterwards,
we quantize σ(x, y) with the step size q = 0.5 pixels. Since
our blur scales increase linearly from 0.5 pixels to 4.5 pixels,
we have 9 different blurring scales within our quantized blur
map σ∗(x, y). Figure 3(a) shows the ‘face’ image captured
using Nikon Camera Control Pro 2 to focus on the ball. The
ball and two men range at different depth so as to suffer
spatially-varying out-of-focus blur. Figure 3(b) is our guided
blur map before quantization (dark pixel suffers small blur-
ring scale, and vice versa). Figure 3(c) shows the all-in-focus
result obtained by our method. Figure 3(d) is the result ob-
tained using Bae et al.’s blur map and Chan et al.’s deconvtv
model. Our method obtains sharper image without the ring-
ing artifacts evident in Figure 3(c). Figure 4(a) shows the
‘stone’ image, which suffers spatially-varying blur. Figure
4(b) and 4(c) show our blur map and our all-in-focus result,
respectively. Figure 4(d) is the result obtained by Xu et al.’s
space-invariant image deblurring [7]. Our result extends the
depth-of-field while outperforms Xu et al.’s result. Figure
5(a) shows the ‘building’ image, which suffers spatially-
varying out-of-focus blur. The magnified regions shows
that our result (Figure 5(h)) reconstruct both foreground and
background while the other methods (Figure 5(i-k)) fail to
reconstruct both foreground and background. Please visit:
www.iis.sinica.edu.tw/ ∼ctshen/svDeblur/svDeblur.html

4. CONCLUSIONS

First, we estimate the blur map using the modified local con-
trast prior with the guided image filtering. Second, we pro-
pose an L1-2 deblurring model that is more robust than the TV
model when the blurring kernel estimation is subject to errors.
Finally, our all-in-focus results demonstrate that our spatially-
varying deblurring method is promising as compared to the
existing delurring methods.
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(a) original (b) our blur map

(c) ours (d) Bae + Chan

Fig. 3. (a) The original ‘face’ image, (b) our blur map (dark
pixel suffers small blurring scale, and vice versa), (c) our all-
in-focus result, and (d) the result using Bae et al.’s blur map
and Chan et al.’s deconvtv.

5. REFERENCES

[1] O. Whyte, J. Sivic, A. Zisserman, and J. Ponce, “Non-uniform
deblurring for shaken images,” in CVPR, 2010, pp. 491–498.

[2] S. Bae and F. Durand, “Defocus magnification,” Comput.
Graph. Forum, vol. 26(3), pp. 571–579, 2007.

[3] Y.-W. Tai and M. Brown, “Single image defocus map estima-
tion using local contrast prior,” in ICIP, 2009, pp. 1797–1800.

[4] E. Kee, S. Paris, S. Chen, and J. Wang, “Modeling and remov-
ing spatially-varying optical blur,” in ICCP, 2011.

[5] S. Zhuo and T. Sim, “Defocus map estimation from a single
image,” Pattern Recognition, vol. 44(9), pp. 1852–1858, 2011.

[6] Q. Shan, J. Jia, and A. Agarwala, “High-quality motion de-
blurring from a single image,” ACM Trans. on Graphics, vol.
27(3), 2008.

[7] L. Xu and J. Jia, “Two-phase kernel estimation for robust mo-
tion deblurring,” in ECCV, 2010, pp. 157–170.

[8] S. Chan, R. Khoshabeh, K. Gibson, P. Gill, and T. Nguyen, “An
augmented lagrangian method for total variation video restora-
tion,” IEEE Trans. Image Processing, 2011.

[9] K. He, J. Sun, and X. Tang, “Guided image filtering,” in ECCV,
2010, pp. 1–14.

[10] Y. Wang, W. Yin J. Yang, and Y. Zhan, “A new alternating min-
imization algorithm for total variation image reconstruction,”
SIAM Journal on Imaging Sciences, vol. 1(3), pp. 248–272,
2008.

[11] T.F. Chan and C.-K. Wong, “Total variation blind deconvo-
lution,” IEEE Trans. on Image Processing, vol. 7, no. 3, pp.
370–375, 1998.

[12] J.M. Bioucas-Dias and M.A.T. Figueiredo, “A new twist:
Two-step iterative shrinkage/ thresholding algorithms for im-
age restoration,” IEEE Trans. Image Processing, vol. 16(12),
pp. 2992–3004, 2007.

(a) original (b) our blur map

(c) ours (d) Xu

Fig. 4. (a) The original ‘stone’ image, (b) our blur map, (b)
our all-in-focus result, and (d) Xu et al.’s result.

(a) original (b) ours (c) our blur map

(d) Shan (e) Xu (f) Bae + Chan

(g) (h) (i) (j) (k)

Fig. 5. (a) The original ‘building’ image, (b) our all-in-focus
result, (c) our blur map,(d) Shan et al.’s result [6], (e) Xu
et al.’s result, (f) the result using Bae et al.’s blur map and
Chan et al.’s deconvtv, and (g-h) are the magnified regions of
(a,b,d,e,f), respectively.
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