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Abstract— In this paper, we propose an efficient algorithm for
solving a balanced approach in frame-based image deblurring.
The balanced approach is usually formulated as a minimization
problem involving an �2 data-fidelity term, an �1 regularizer
on sparsity of frame coefficients, and a penalty on distance
of sparse frame coefficients to the canonical frame coefficients.
The balanced approach bridges synthesis-based and analysis-
based approaches. Our algorithm is based on a variable splitting
strategy and the classical alternating direction method (ADM).
This paper shows how the proposed algorithm can be applied
to solve the balanced approach efficiently. More precisely, a
regularized version of the Hessian matrix of the �2 data-fidelity
term is involved, and by exploiting fast tight frame and circular
structure of the observation matrix, the matrix can perform
efficiently for image deblurring application. Convergence of the
proposed algorithm is guaranteed by the existing ADM theory.
Numerical simulations illustrate the efficiency of our proposed
algorithm in frame-based image deblurring.

I. INTRODUCTION

A classical and important research topic in image processing

is image deblurring. The goal of this task is to recover

the unknown true image u ∈ R
n from a noisy blurred

measurement y ∈ R
m that is often modeled by

y = Bu + n (1)

where B is a convolution operator, n is a white Gaussian

noise with variance σ2. In frame-based image deblurring,

the unknown image u is represented as u = Wx, where

W ∈ R
n×d denotes a frame, x ∈ R

d is the frame coefficients.

In general, the frame may be redundant [11], [20]. In this

paper, the redundant and normalized tight frame (Parseval

frame) is used, i.e., WWT = I . Thus , u = W (WT u) for

every vector u ∈ R
n. The components of the vector WT u are

called the canonical coefficients representing u. So the frame-

based image deblurring can be described as: the coefficients

x are estimated from the noisy image first, then the unknown

image u can be constructed as a linear combination of a few

columns of frame W .

Since tight wavelet frame systems are redundant, the map-

ping from the image u to its coefficients is not one-to-

one, i.e., the representation of u in the frame domain is not

unique. Three formulations utilizing sparseness of the frame

coefficients are studied, namely analysis based approach, syn-

thesis based approach and balanced approach. The balanced

approach [4], [6], [23] can be formulated as:

min
x

1
2
‖BWx − y‖2

2 +
γ

2
‖(I − WT W )x‖2

2 + λT |x|1 (2)

where γ > 0, λ is a given nonnegative weight vector. The

first term denotes penalty on the data fidelity, the last term

penalizes the sparsity of coefficient vector, the second term

penalizes the distance between the frame coefficients x and

the range of WT , i.e., the distance to the canonical frame

coefficients of u. The larger γ makes the frame coefficients

x closer to the range of WT , i.e., the frame coefficients x is

closer to the canonical frame coefficients of u.

When γ = 0, the problem (2) is reduced to

min
x

1
2
‖BWx − y‖2

2 + λT |x|1. (3)

This is called the synthesis based approach where only the

sparsity of the frame coefficients is penalized and the estimated

image is synthesized by the sparsest coefficients..

On the other extreme, when γ = ∞, the term ‖(I −
WT W )x‖2

2 must be 0 if the problem (2) has solution. This

implies that x is in the range of WT , i.e., x = WT u for some

u ∈ R
n. Thus the problem (2) can be rewritten as

min
u∈Rn

1
2
‖Bu − y‖2

2 + λT |WT u|1. (4)

This is called analysis based approach as the coefficient is in

the range of the analysis operator. It is noted that in (4) only the

sparsity of canonical wavelet frame coefficients is penalized,

which corresponds to the smoothness of the underlying image.

Obviously, the problem (2) balances the sparsity of the

frame coefficients and the smoothness of the image, hence

is called the balanced approach. It is also noted that when

the columns of W form an orthonormal basis, the above three

approaches are exactly the same. However, for the redundant

tight frame W , these three approaches can not be derived from

one another. It is hard to draw definitive conclusions as to

which approach is better since each has its own favorable data

sets and applications. In the literature, these three approaches

are developed independently. For example, the analysis based

approach was studied in [14], [15] and reference therein. The

synthesis based approach was studied in [12], [16]–[19] and

reference therein. The balanced approach started from [7], [8]

for high resolution image reconstruction. It was further applied

to various applications in [4]–[6], [23]. Since the balanced

approach can be viewed as a way to balance the analysis

and synthesis based approaches, and it can provide a balance

between sharpness of the features and smoothness for the

recovered images, we will only consider the balanced approach

in this paper for frame-based image restoration.
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Recently, the fast iterative shrinkage-thresholding algorithm

(FISTA) in [2] was adopted to solve the balanced approach

in frame-based image restoration [23] where FISTA is also

called accelerated proximal gradient (APG). The FISTA in

[2] is based on several variants of APG algorithms which

were developed earlier by Nesterov and Nemirovski [21], [22].

These AGP algorithms can speed up the performance of the

popular iterative shrinkage-thresholding algorithms (ISTA) [9],

[10], [19]. They also have been adapted in various applications

[2], [3], [23]. Although the convergence speed of FISTA is

faster than ISTA, both of them essentially only use the gra-

dient information and the first-order approximation of smooth

function.

A fast algorithm based on variable splitting and classical

alternating direction method was proposed for solving the

analysis and synthesis based approaches in image restoration

[1]. The fast speed of this algorithm comes from the fact that

it uses a regularized version of the Hessian of the �2 data-

fidelity term, which can be computed efficiently for these

standard image restoration, while the previously mentioned

algorithms essentially only use the gradient information. This

motivates us to adapt the alternating direction method to solve

the balanced approach problem in the frame-based image

deblurring. In this paper, we show that the proposed ADM-

based algorithm involves a regularized version of the Hessian

of the data fidelity term and penalty on the distance term

of the sparse coefficients to the canonical frame coefficients.

And we also show that in the frame-based image deblurring,

the regularized Hessian matrices and their inverses can be

computed efficiently by exploiting the special convolution

structures of the observation matrices and a tight Parseval

frame W with fast computational algorithms. Therefore the

results of this paper show that the balanced approach problem

in image deblurring can be solved efficiently by using ADM

algorithm, and numerical experiments also show that the speed

of the proposed algorithm is faster than the previous state of

the art method such as ISTA and FISTA.

II. STANDARD ALTERNATING DIRECTION METHOD

Consider an unconstrained optimization problem of the form

min
u∈Rn

f1(u) + f2(Gu), (5)

where f1 and f2 are closed, proper convex functions, and G ∈
Rd×n. Variable splitting consists in creating a new variable,

say v, to serve as the argument of f2, under the constraint that

Gu = v. This leads to the constrained problem

min
u∈Rn

f1(u) + f2(v), subject to Gu = v (6)

which is clearly equivalent to the unconstrained problem (5). A

natural way to address (5) is the so-called alternating direction

method of multipliers (ADMM) [1], [13]:

Algorithm ADMM

1) Set k = 0, choose μ > 0, v0 and d0.

2) repeat
3) uk+1 ∈ arg minu f1(u) + μ

2 ‖Gu − vk − dk‖2
2.

4) vk+1 ∈ arg minv f2(v) + μ
2 ‖Guk+1 − v − dk‖2

2.
5) dk+1 = dk − (Guk+1 − vk+1).
6) k ← k + 1.
7) until stopping criterion is satisfied.

Here μ ≥ 0 is called AL penalty parameter and dk corresponds

to the vector of Lagrange multipliers at the iteration k.
The convergence of ADMM is guaranteed by the theorem

in [13] if f1 and f2 are closed, proper convex functions, and

G ∈ Rd×n has full column rank.

III. PROPOSED METHOD

The balanced approach problem (2) can be rewritten as the

constrained optimization problem by variable splitting:

min
x,v∈Rn

1
2
‖BWx − y‖2

2 +
γ

2
‖(I − WT W )x‖2

2 + λT |v|1
subject to x = v (7)

Then applying ADMM to the problem (7), the steps 3) - 5)

in Algorithm ADMM can be replaced with
3a) xk+1 = arg minx,v ‖BWx−y‖2

2+γ‖(I−WT W )x‖2
2+

μ‖u − vk − dk‖2
2.

4a) vk+1 = arg minv λT |v|1 + μ
2 ‖xk+1 − v − dk‖2

2.
5a) dk+1 = dk − (xk+1 − vk+1).
The minimization problem in the step 4a) with respect to v

can be solved by the soft thresholding method [9]:

vk+1 = soft(v
′
k, λ/μ) (8)

where v
′
k = xk+1 − dk and soft(x, τ) = sign(x)�max{|x| −

τ, 0} with � denoting the component-wise product, i.e., (x�
y)i = xiyi and sign being the signum function.

Note that the step 3a) is a strictly convex quadratic mini-

mization problem with respect to x, hence it can be reduced

to the following linear system:

xk+1 = A−1(WT BT y + μ(vk + dk)) (9)

where

A = WT BT BW + γ(I − WT W ) + μI. (10)

The matrix A can be seen as a regularized version of

Hessian matrix WT BT BW by adding the terms γ(I−WT W )
and μI . In general, the computations of this matrix and its

inverse are not affordable for general large-size matrix B.

However, in standard image deblurring problem, B represents

a convolution operator, the matrix-vector products can be

performed with the help of the fast Fourier transform (FFT).

Thus the matrix-vector products involving WT BT BW can

be quickly solved by additional fast wavelet frame algorithm

[20]. However, since the last two terms is added into A, it is

not straightforward to obtain the inverse of A where the fast

computations can be employed explicitly. In the following part

of this section, we will derive a formula that can compute the

inverse of A efficiently.
Using the Sherman-Morrison-Woodbury matrix inversion

formula and WWT = I , we can obtain (due to the space

limitation, the detailed derivation steps are omitted here):

A−1 =
1
μ

[αI + (1 − α)WT W − WTFW ] (11)
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where α = μ
μ+γ and

F = BT (μI + BBT )−1B. (12)

Define

rk = WT BT y + μ(vk + dk). (13)

In view of (8), (12), (11),(9) and (13), we can obtain the fol-

lowing algorithm to solve the balanced approach optimization

in frame-based image deblurring.

Algorithm ADMM for balanced approach (ADMM-B)

1) Set k = 0, choose μ > 0, v0 and d0.

2) repeat
3) xk+1 = 1

μ (αrk + (1 − α)WT Wrk − WTFWrk).
4) vk+1 = soft(v

′
k, λ

μ ).
5) dk+1 = dk − (xk+1 − vk+1).
6) k ← k + 1.

7) until stopping criterion is satisfied.
It is noted that WT BT y does not change during the

algorithm and can be precomputed. Since G = I , it is obvious

that the convergence of the proposed ADMM algorithm in this

paper can be guaranteed by the existing ADMM theory.

Remark: Obviously, it contains both frame-based synthesis

and analysis approaches as special cases. In fact, α = 1 (γ =
0), it is synthesis-based approach [1]. And α = 0 (γ = ∞), it

is analysis-based approach [14].

1) Computing F: In image deblurring, B represents a

periodic convolution, so F can be computed in Fourier domain

that has fast algorithm. In fact, B can be factorized as

B = UT DU (14)

where U represents the 2-D discrete Fourier transform (DFT)

with UT = U−1, D is a diagonal matrix containing the DFT

coefficients of B. Thus we have

F = BT (μI + BBT )−1B = UT D∗(|D|2 + μI)−1DU (15)

where D∗ denotes complex conjugate and |D|2 the squared

absolute values of the entries of D. Since all the matrices in

D∗(|D|2 + μI)−1D are diagonal, it can be computed with

O(n) cost, while the products by U and UT can be computed

with O(n log n) cost using FFT. Thus products by matrix F
have O(n log n) cost. Hence, xk+1 can be computed with

O(n log n) cost using the fast tight frame W and the above

fast algorithm of F .

IV. SIMULATION RESULTS

In this section, numerical simulations are used to illustrate

the performance of our proposed algorithm in the frame-

based image deblurring with balanced regularization. In [23],

the FISTA algorithm was shown to be more efficient than

the existing algorithms such as the split Bregman iteration,

proximal forward-backward splitting or ISTA. Hence, in this

section, we only need to compare our proposed ADMM-

B algorithm with the FISTA algorithm. Our simulations are

written in MATLAB and are performed on a Dell computer

with Intel Xeon CPU 2.66GHz and 4GB of RAM under

Windows XP.

We consider deblurring problems on the well-known Cam-

eraman image with sized 256× 256 pixels. The blur operator

B is applied via FFT, the image is blurred by a 9×9 uniform

blur and followed by additive normal noise with zero mean and

standard variance σ = 0.56. W is a redundant Haar wavelet

frame with four levels. To compare the speed of the algorithms,

we run them until they reach the same value of the objective

function. In our simulations, we choose γ = 1, λ = 0.0075 and

μ = 0.1λ. The number of iterations, computation times, and

improvement in SNR (ISNR) are the average values over 10

instances and are presented in Table I. The average ISNR was

computed as 10 log10(
∑

k ‖u − yk‖2/
∑

k ‖u − û‖2), where

u is the original image, yk is the observed image at the kth

iteration, and ûk is the corresponding estimated image. To

visually illustrate the relative speed of the algorithms, Fig.

1 plots the evolution of the objective function versus time.

The deblurred image produced by our proposed algorithm is

shown in Fig. 2 The simulations in this section show that our

proposed algorithm is clearly faster than the FISTA algorithm.

TABLE I

IMAGE DEBLURRING: COMPARISON

Algorithm Iterations CPU time (seconds) ISNR (dB)
FISTA 102 58.23 7.63

ADMM-B 4 5.34 8.54
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Fig. 1. Objective function evolution

V. CONCLUSIONS

An efficient ADM-based algorithm for solving the bal-

anced approach optimization problem in frame-based image

deblurring is presented. The balanced approach equalizes

the analysis-based and synthesis-based approaches in image

restoration. The proposed ADM-based algorithm can be used

to solve this optimization problem efficiently by exploiting the

fast tight frame transform algorithm and the special convolu-

tional structure of observation matrix in the standard image

deblurring problem. Theoretical and experimental results have
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shown that the proposed ADMM-B algorithm in this paper is

faster than previous state-of-the- art methods.
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original
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Estimated using FISTA

Estimated using ADMM−B

Fig. 2. Image deblurring: (a) Original cameraman image with 256 × 256
pixels. (b) Image blurred with noise. (c) Estimated image using FISTA. (d)
Estimated image using our proposed ADMM-B.

1064


