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ABSTRACT

This paper proposes a novel content-based image retrieval 
technique, which facilitates short-term (intra-query) and 
long-term (inter-query) learning processes by integrating 
accumulated users’ historical relevance feedback-based 
semantic knowledge.  The history is efficiently represented 
as a dynamic semantic feature of the images.  As such, the 
high-level semantic similarity measure can be dynamically 
adapted based on the semantic relevance derived from the 
dynamic semantic features.  The short-term relevance 
feedback technique can benefit from long-term learning.  
Our extensive experiments show that the proposed system 
outperforms three peer systems in the context of both 
correct and erroneous relevance feedback. 
 

Index Terms— CBIR, dynamic semantic feature, cross-
session learning, inter-query learning, relevance feedback 

1. INTRODUCTION 
 
Relevance feedback (RF) techniques [1] have been widely 
used in content-based image retrieval (CBIR) systems to 
formulate the query in an interactive process, bridge the 
semantic gap, and improve the retrieval performance.  
However, most existing RF techniques use short-term 
(intra-query) learning to handle query formulation in a 
single retrieval session. Recently, long-term (inter-query) 
learning extends short-term learning by studying the 
accumulated feedback history collected from multiple query 
sessions to derive the semantic meaning of database images. 

Long-term learning can be roughly classified into 
retrieval pattern-based learning and feature vector model-
based learning.  Retrieval pattern-based learning is to 
establish the relationship between the current and previous 
query sessions by analyzing retrieval patterns between the 
sessions.  If the two sessions have similar image retrieval 
patterns, this learning technique assumes that the user must 
be searching semantically similar images and therefore 

return images with similar retrieval patterns as the retrieval 
results.  On the contrary, feature vector model-based 
learning is to bring the feature vectors of similar images 
close to each other by a weighting or transform scheme. 
Retrieval pattern-based learning is generally more effective 
than feature vector model-based learning since the retrieval 
pattern approximately represents the semantics of images 
from users’ perspective.  Here, we briefly review several 
representative retrieval pattern-based learning techniques. 

Heisterkamp [2] applies the latent semantic analysis 
method on the term-by-document matrix to learn a 
generalization of the relationship between the current query 
and the search history.  He et al. [3] use the semantic space 
to store retrieval patterns (labels of relevant and irrelevant 
images) of all query sessions and apply dot product to find 
semantically similar images.  Han et al. [4] uses the memory 
learning technique to compute the ratio of co-positive-
feedback frequency and co-feedback frequency for 
analyzing the relationship among query sessions.  A 
knowledge memory model is then formed to store semantic 
information and learn semantic relations.  Hoi et al. [5] 
apply the statistical correlation on the retrieval log to 
analyze the relationship between current and past retrieval 
sessions.  Yin et al. [6] design a virtual-features-based 
technique to digest the long-term feedback history to 
estimate the semantic relevance between images.  Although 
these learning techniques achieve impressive retrieval 
results, they require a relatively large matrix to store 
historical feedback information.  The matrix may be sparse 
if queries fall into a few semantic categories, which may 
deteriorate the learning performance.  Moreover, erroneous 
feedback may also lead to the storage of incorrect 
information and degrade the overall retrieval performance. 

 In this paper, we propose a novel long-term cross-
session learning scheme for CBIR.  First, we integrate low-
level visual features (LVFs) and high-level dynamic 
semantic features (DSFs) in short-term learning to formulate 
the query in a single retrieval session.  Second, we build an 
adaptive semantic matrix in long-term learning to store 
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retrieval patterns (i.e., similarity of relevant and irrelevant 
images) of historical query sessions.  Third, we extract 
DSFs of database images and update DSFs of the query 
image in each RF iteration step by reinforcing semantically 
relevant features and suppressing semantically irrelevant 
features using DSFs of positively and negatively labeled 
images.  Fourth, we apply integrated similarity measure to 
estimate the semantic relevance between images and return 
top retrieved images.  The rest of the paper is organized as 
follows: Section 2 presents our proposed learning approach.  
Section 3 compares our system with three peer systems.  
Section 4 draws conclusions and presents future directions. 
 
2. DYNAMIC SEMANTIC FEATURE-BASED LONG-

TERM CROSS-SESSION LEARNING 
 
The proposed DSF learning system aims to accurately 
represent each image using high-level semantic features by 
capturing the intention of multiple users.  Semantic concepts 
are learned from prior intra- and inter-query sessions.  In 
intra-query sessions, the system uses the user’s RF within a 
query session to update the support values of concepts being 
sought by the user.  In inter-query sessions, the system uses 
previous retrieval experiences of multiple users to update 
the DSFs of positively and negatively labeled images.  Our 
system seamlessly combines intra- and inter-query (cross-
session) learning to facilitate faster and more accurate 
learning. 
 
2.1. Overview of the Proposed CBIR System 
 
Each image in our system is represented by both LVFs and 
DSFs.  The 100-D LVFs consist of 64-bin HSV color 
histogram, 9 color (first three moments in HSV), 18 edge 
(18-bin edge histogram of the converted grayscale image), 
and 9 texture (entropy of each of nine wavelet detail 
subbands of the grayscale image).  Initially, the DSFs of 
each image are empty since no knowledge has been learned.  
The DSFs are updated after each query session. 

The dissimilarity between two images, Ii and Ij, is 
computed by combining the semantic and visual 
dissimilarity of two images as follows: 
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where LVF(Ii) represents LVFs of an image Ii, DSF(Ii) 
represents DSFs of an image Ii, d(LVF(Ii), LVF(Ij)) 
represents the Euclidean distance between LVFs of Ii and Ij, 
and DSF(Ii) • DSF(Ij) represents the dot product between 
DSFs of Ii and Ij.  Here, the smaller dissimilarity indicates 
the higher similarity between the two images. 

Before any online image retrieval process starts, each 
database image is represented by the empty DSF and the 
100-D LVFs.  The number of semantic concepts learned is 0 
(i.e., SemCount=0).  This value serves as the index of a 
particular relevant semantic concept.  It starts from 0 

(indicating no relevant semantic concept has been learned) 
and is incremented by 1 every time a query is made 
(indicating a new relevant semantic concept has been 
learned based on the current query).  In our system, this 
value is also used to expand the dimensionality of DSFs of 
database images.  When a user starts the online image 
retrieval process, the learning process for any query image 
q(t) (i.e., query image q at the tth iteration) is as follows: 

1. Add SemCount by 1. 
2. Apply Eq. (1) to compute the dissimilarity measure 

between q(t) and each database image Di. 
3. Return top n images, which have the smallest 

dissimilarity measures to q(t). 
4. While the user is not satisfied with the retrieval 

results, perform the following operations: 
4.1. Allow the user to label relevant (positive) 

images from the returned pool while treating 
non-labeled images as irrelevant (negative). 

4.2. Call UpdateDSF (inter-query learning function 
as explained in section 2.2) to update DSFs of 
negatively labeled images at current iteration 
and accumulated positively labeled images in 
the current query session. 

4.3. Call UpdateQueryDSF (intra-query learning 
function as explained in section 2.3) to update 
DSF(q(t+1)) using DSFs of positively and 
negatively labeled images. 

4.4. Call UpdateQueryLVF (intra-query learning 
function as explained in section 2.3) to update 
LVF(q(t+1)) using LVFs of positively labeled 
images. 

4.5. Apply Eq. (1) to compute DisSim(q(t+1), Di) 
between q(t+1) and all images Di’s. 

4.6. Return top n images, which have the smallest 
dissimilarity measures to q(t+1). 

Based on the above learning and retrieval process for a 
query, we clearly observe the following: 1) Our method 
provides a framework for integrating intra- and inter-query 
RF-based learning techniques in a single retrieval system.  
2) Our method dynamically adjusts the distance between the 
query and database images based on query’s updated DSFs 
and LVFs derived from both intra- and inter-query RF-
based learning, and DSFs of database images derived from 
the cross-session-based RF history. 

 
2.2. Inter-Query Learning 

 
The objective of inter-query learning is to derive DSFs of 
database images by capturing the intention of multiple 
users.  It uses the UpdateDSF function to dynamically store 
and update historical RF experiences from multiple users to 
capture more accurate semantic features.  Specifically, 
UpdateDSF function propagates the learned DSFs of 
positively labeled images to other positively labeled images, 
whose DSFs are empty.  The update strategies are guided by 
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the observation that all positively labeled images should 
have similar semantic concepts.  The algorithmic view of 
UpdateDSF function is summarized as follows: 

1. Let Pos denote the set of accumulated positive 
images in the current query session and Neg denote 
the set of negative images in the current iteration. 

2. Collect positive images with non-empty DSFs in a 
set P1. 

             })(|{1 iii ImDSFandPosImImP       (2) 
3. If 1P , update DSFs for PosPosImj  by: 
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 where |P1| denotes the number of images in set P1. 
4. Expand DSFs for PosPosIm j  by adding a new 

semantic concept to its current DSFs using: 
      )1()()( SemCountPosImDSFPosImDSF jj

    (4) 
 where  denotes the appending operation, and 

SemCount(1) denotes the operation to put a value of 
1 in the dimension specified by SemCount. 

5. Expand DSFs for NegNegIm j  by adding a 
new semantic concept to its current DSFs using: 

    )1()()( SemCountNegImDSFNegImDSF jj
  (5) 

 where SemCount(-1) denotes the operation to put a 
value of -1 in the dimension specified by SemCount. 

It should be noted that SemCount is incremented by 1 after 
each query session. Correspondingly, the dimensionality of 
DSFs of database images is expanded by 1. 
 
2.3. Intra-Query Learning 
 
The objective of intra-query learning is to update query’s 
DSFs using user positively and negatively labeled images 
during RF iterations.  It also updates query’s LVFs by 
moving the query vector towards the subspace that contains 
more relevant images. Two functions, UpdateQueryDSF
and UpdateQueryLVF, are designed to achieve these two 
objectives, respectively. 

UpdateQueryDSF function is to update query’s DSFs 
by reinforcing semantically relevant features and 
suppressing semantically irrelevant features using DSFs of 
both positively and negatively labeled images.  Specifically, 
using positively labeled images, the ith element of query’s 
DSFs at iteration t+1, i.e., DSF(q(t+1, i)), is updated by the 
following rules: 
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where DSF(PosIm, i) corresponds to the ith element of DSFs 
of a positively labeled image, DSF(q(t, i)) corresponds to 
the ith element of DSFs of the query image q at the tth 
iteration, and the parameter  is the learning adjustment rate 
and is empirically set to be 1.2.  Here, when a positively 
labeled image and the query image share the same type of 
semantic concepts (i.e., the values of their semantic features 
have same signs), we increase the magnitude of the ith 
element of query’s DSFs using both  and the ith element of 
DSFs of the positively labeled image (refer to the 1st and 3rd 
conditions).  Otherwise, we decrease the magnitude of the ith 
element of query’s DSFs using the ith element of DSFs of 
the positively labeled image (refer to the 2nd condition). 

Similarly, using negatively labeled images, the ith 
element of query’s DSFs at iteration t+1 is updated by: 
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where DSF(NegIm, i) corresponds to the ith element of DSFs 
of a negatively labeled image.  Here, we reduce the 
magnitude of the ith element of query’s DSFs when a 
negatively labeled image and the query image share the 
same type of semantic concepts (i.e., the values of their 
semantic features have the same signs) and increase the 
magnitude of the ith element of DSFs otherwise.  These two 
update strategies are guided by the following observations: 
1) The query’s DSFs should have similar semantic concepts 
as positively labeled images.  2) The query’s DSFs should 
not have semantic concepts associated with negatively 
labeled images.   

UpdateQueryLVF function is to update LVFs of the 
query using LVFs of all positively labeled images by: 
                       

PosIm
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where LVF(q(t+1)) denotes LVFs of the query image q at 
t+1th iteration, LVF(Imi) denotes LVFs of a positively 
labeled image Imi, and |Pos| denotes the number of 
positively labeled images. 

 
3. EXPERIMENTAL RESULTS 

We tested our CBIR system on three data sets: 2000-Flickr 
DB, 6000-COREL DB, and the combined 2000-Flickr and 
6000-COREL DB.  Flickr and COREL DBs contain 20 and 
60 categories with 100 images per category, respectively. 

We first designed three experiments on the 2000-Flickr 
DB by applying an automatic feedback scheme to perform 
the iterative retrieval process.  A retrieved image is 
considered as positive if it belongs to the same category as 
query.  The retrieval accuracy is computed as the ratio of 
positive images to total returned images (e.g., 25 in our 
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system).  We randomly chose 2%, 5%, and 10% of database 
images as queries to construct three adaptive semantic 
matrices in cross-session learning, respectively.  Another 
three experiments were performed to incorporate the 
possible erroneous feedback in the real-world RF process, 
wherein erroneous feedback may result from user inherent 
subjectivity or laziness.  Fig. 1 shows the average retrieval 
accuracy for 1800 Flickr images using different adaptive 
semantic matrices as learning bases.  It clearly shows the 
retrieval accuracy is improved when more accurate DSFs of 
database images are learned for a larger learning base.  The 
retrieval accuracy on the largest learning base is above 90% 
after the 1st and the 2nd iterations in the context of correct 
and erroneous RF, respectively.  Therefore, we chose 10% 
of database images to construct the adaptive learning base 
for future online retrieval. 
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Fig. 1: Retrieval performance on 2000-Flickr DB using 
different number of queries and using correct (left) and 5% 
erroneous RF (right). 

We compared our system with Han’s memory learning 
[4], Hoi’s log-based [5], and Yin’s virtual-feature-based 
systems [6] on two larger DBs.  Fig. 2 and Fig. 3 show the 
average retrieval precision of four systems on 6000-COREL 
DB and the combined DB after using 10% of database 
images to build their perspective learning bases, 
respectively.  Our system clearly achieves the best precision 
when correct and erroneous feedback is involved.  
Comparing to the 2nd best system in the context of correct 
feedback, our system makes 4.32% and 1.04% improvement 
on 6000-COREL, and 5.45% and 0.20% improvement on 
the combined DB for the last two iterations, respectively.  It 
achieves accuracy of 92.79% and 94.57% on 6000-COREL, 
and 82.40% and 85.80% on the combined DB for the last 
two iterations, respectively.  In the context of erroneous 
feedback, our system makes 13.71% and 5.21% 
improvement on 6000-COREL, and 17.44% and 7.11% 
improvement on the combined DB for the last two 
iterations, respectively.  It achieves accuracy of 83.28% and 
86.48% on the 6000-COREL, and 69.80% and 74.10% on 
the combined DB for the last two iterations, respectively.  
As a result, our system is more resilient to erroneous 
feedback. This feature results from robust cross-session 
learning and accurate DSFs.  Our retrieval time is also 
comparable with its peers due to the simple update process. 

 
4. CONCLUSIONS AND FUTURE WORK 

 

We propose a novel DSF-based long-term cross-session 
learning approach for CBIR.  Major contributions are:  1) 
Integrate LVFs and DSFs in short-term learning to 
formulate the query in a single retrieval session.  2) Build an 
adaptive semantic matrix in cross-session learning to store 
similarity of relevant and irrelevant images of historical 
query sessions.  3) Update DSFs of the query image by 
reinforcing semantically relevant features and suppressing 
semantically irrelevant features. 4) Apply the integrated 
similarity measure to estimate the semantic relevance 
between images. 
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Fig. 2: Comparison of four systems on 6000-COREL DB 
using correct (left) and 5% erroneous RF (right). 
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Fig. 3: Comparison of four systems on the combined DB 
using correct (left) and 5% erroneous RF (right). 

Experimental results show our system outperforms peer 
systems considered and achieves highest retrieval accuracy 
in all iterations in terms of correct and erroneous feedback.  
Other compact forms of the adaptive semantic matrix will 
be investigated in future research. 
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