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ABSTRACT
Content-based vehicle retrieval in unconstrained environment plays
an important role in surveillance system. However, due to large
variations in viewing angle/position, illumination, and background,
traditional vehicle retrieval is extremely challenging. We approach
this problem in a different way by rectifying vehicles from disparate
views into the same reference view and searching the vehicles based
on informative parts such as grille, lamp, and wheel. To extract
those parts, we fit 3D vehicle models to a 2D image using active
shape model (ASM). In the experiments, we compare different 3D
model fitting approaches and verify that the impact of part rectifica-
tion on the content-based vehicle retrieval performance is significant.
We propose a model fitting approach with weighted jacobian system
which leverages the prior knowledge of part information and shows
better results. We compute mean average precision of vehicle re-
trieval with L1 distance on NetCarShow300 dataset, a new challeng-
ing dataset we construct. We conclude that it benefits more from the
fusion of informative rectified parts (e.g., grille, lamp, wheel) than
a whole vehicle image described by SIFT feature for content-based
vehicle retrieval.

Index Terms— 3D model construction, 3D model fitting,
content-based vehicle retrieval, part rectification

1. INTRODUCTION

Vehicles are one of the most important subjects in surveillance en-
vironment when surveillance cameras become ubiquitous and more
and more surveillance video data is available. However, millions of
surveillance videos are so large-scaled that it is impossible for hu-
man to deal with. Therefore, effective vehicle retrieval is becoming
increasingly significant. As a result, we propose an effective content-
based vehicle retrieval approach to satisfy the needs. See Figure 1.

To address diversity of viewpoints and shape variation, it comes
to our minds that using rectified parts extracted from fitted 3D vehi-
cle models must be more powerful than a whole image for content-
based vehicle retrieval. In other domains, such as face [1] and people
[2] search, salient attributes or parts have been utilized to identify tar-
gets. However, the utilization of parts for vehicles has not achieved
similar successes. In addition, unlike people or face recognition, us-
ing 2D models to extract parts of a vehicle within the bounding box
generally fails due to dramatic variations in viewing angles. Em-
ploying 3D models is more suitable for our work. In fact, using 3D
vehicle model is one of the major line of research in the fields of ve-
hicle detection [3], pose estimation [4][5], classification [6][7], etc.
To deal with the lack of details in simple polyhedral models for vehi-
cle model fitting, M. J. Leotta et al. [8] and Y. Tsin et al. [9] use more
delicate 3D vehicle models which provide rich constraints to match
vehicles reliably and refine 3D-to-2D alignment until convergence.

Searching for vehicles in surveillance videos, Feris et al. [10]
build a surveillance system capable of vehicle retrieval based on se-

Fig. 1. An overview of the proposed system. (a) Input image. (b)
Aligning 3D model to 2D image. (c) Rectifying vehicles to the same
reference view points and extracting vehicle parts (e.g., grille, wheel,
and lamp). (d) Top 5 searching results by fusing three parts. Best
viewed in color.

mantic attributes. To deal with different viewpoints, they train 12
motionlet detectors from a set of city surveillance cameras. They
define several attributes as possible descriptions, such as dominant
color, direction, and vehicle dimensions. To estimate vehicle dimen-
sions in world coordinates, they manually do camera calibration and
use a simple 3D model fitting approach on the basis of several as-
sumptions (i.e., a vehicle’s location on the ground plane, orientation
of heading direction, and the scale of the model).

Taking advantage of previous works, we propose to augment
content-based vehicle retrieval by aligned 3D vehicle model and fus-
ing informative parts (cf. Figure 1). First, we establish consistent
shape representation between several 3D vehicle models (Section
2) and align 3D model to natural images (Section 3) (cf. Figure
1(b)). Second, informative parts (e.g., grille, lamp, and wheel) are
extracted and rectified into one reference view (Section 4), and the
parts are represented by several features for retrieval (Section 5) (cf.
Figure 1(c)). Third, we evaluate our approach under different situ-
ations. The result shows that we improve the retrieval performance
significantly even in diversity of viewpoints.

The main contributions of this work include:

• We implement and compare current state-of-the-art 3D model
fitting algorithms and evaluate on a challenging dataset.

• We argue to improve 3D model fitting precision by leveraging
the prior knowledge of those informative parts.

• We investigate the impacts of rectified parts on the content-
based retrieval performance.

• To our best knowledge, this is the first content-based vehicle
retrieval approach that uses informative parts and analyzes the
detailed parameterizing components for the framework.
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2. 3D VEHICLE MODEL CONSTRUCTION

Considering shape variation of vehicles, we build an active shape
model (ASM) for vehicles. We manually select 128 3D points for
a half vehicle model to make sure the correspondence of the same
physical shape. The other half can be obtained by mirroring. Pro-
crustes analysis is done to align shapes of each instance. Then, we
apply principal component analysis (PCA). The M eigenvectors cor-
responding to the M largest eigenvalues of the covariance matrix
define the vehicle space. By projecting a 3D vehicle model to the
vehicle space, we can get a vehicle shape with a distribution in M-
dimensional weight space. The projected weights control the vari-
ability of the shape of a vehicle model.

In our experiment, we use 11 3D vehicle models as training in-
stances, including 3 sedans, 2 wagons, 1 pickup truck, 1 crossover, 2
hatchbacks, and 2 SUVs, with totally 256 salient points for two sides
and 342 triangular faces to describe wheels, radiator grille, lamps,
and other semantic parts. According to the mean reconstruction er-
ror estimated by the ratio between average distance error and the
vehicle length, we find that less than 0.4% reconstruction error re-
sults from 8 eigenvectors; that is, the error is only about 4 pixels if
the length of a projected vehicle is 1000 pixels, which is relatively
low.

3. 3D VEHICLE MODEL FITTING APPROACH

In order to extract parts of vehicles, 3D model fitting is essential. In
the model fitting step, we assume that initial position and pose of
a vehicle in an image can be estimated by multi-view object detec-
tion approaches (e.g., [3][4]) and the direction and detected objects
for the moving objects. Content-based vehicle retrieval is based on
information about the target vehicle.

We investigate and compare two different state-of-the-art ap-
proaches in [8] and [9]. One depends on point registration and the
other solves a Jacobian system. This is the first work comparing
these two approaches. Moreover, we propose to leverage the prior
knowledge of semantic parts (e.g., grille, lamp, and wheel) and fur-
ther improve the challenging 3D alignment problem.

In general, the approaches start with some initial parameters.
Then, a set of hypothetic edges is generated, and a collection of
correspondences between the observed and projected edges is de-
termined by local search. After iterative updates for the correspon-
dences, the shape and pose will converge.

3.1. Model Fitting Methods

3.1.1. Fitting by Point Registration

Here we apply point registration (PR) algorithms to find correspond-
ing points, solve equations, and obtain projected weights and trans-
lations as [9]. First of all, given an initial pose, each landmark point
is reconstructed from the mean shape and projected according to the
general camera equation. Second, for each projected salient edge
point, we find all nearby points in the normal direction as a candi-
date point set. Third, we apply a point registration approach, Kernel
Correlation (KC) [11] or Coherent Point Drift (CPD) [12]. The step
finds a rigid or non-rigid transformation which maximizes the corre-
lated distribution between two point sets. Finally, when we assume
only shape and translation parameters are unknown, the model fit-
ting problem is formulated as a least square problem based on the
correspondence and other known factors, and it can be solved by
repeating the steps until it converges.

Fig. 2. Illustration of 3D model fitting process. (a) The input image
with superjacent 3D ground truth data. (b) The synthetic weight map
of grille, lamp and wheel drawn in different colors. For each part,
the color strength represents the weights. (c) Intermediate result in
3D model fitting process. Red line segments are hypothetic edges of
current vehicle pose. The points on the hypothetic edges are green
and the corresponding points on the observed edges are blue. Each
correspondence is linked by a yellow line which represents the er-
ror measurement. (d) Intermediate weight value of each observed
points. Higher weight values imply higher probability of the ob-
served point belonging to the correct part. Best viewed in color.

3.1.2. Model Fitting by Jacobian System

As mentioned earlier, we assume there are initial parameters. Given
a collection of correspondences between observed and projected
edges, each corresponding edge point produces one error measure-
ment ei. The fitting problem can be formulated as a Jacobian system
(JS) in [8]: JΔp = e, where e is the vector of signed errors, Δp
is the vector of parameter displacement updated at each iteration,
and J is the Jacobian matrix with current parameters. The solution
is found by a least square method and iteratively optimizing the
parameters until convergence.

3.2. Model Fitting with Part Information

Most of the model-fitting algorithms find corresponding points by
local search of the projected edges depending only on some low-
level features, such as edge intensity and edge orientation, which are
still likely to fail and converge to local maxima in common cases due
to cluttered background or complexities of edges on the surface of
vehicles. We are interested in whether it is possible to improve the
fitting algorithm with some prior knowledge of parts. That is, we can
give different weights to different correspondences and lead to bet-
ter fitting results. To validate our assumption for sure, we generate
synthetic weight maps of parts by using annotated ground truth data
(Figure 2(b)), and formulate this problem into a weighted Jacobian
system (WJS): WJΔp = We, where W is a diagonal weight ma-
trix with each diagonal element wii representing the weight of each
correspondence. We take two important weights into consideration,
distance weight wdist and part weight wpart. wii is computed by
a linear combination with λ: wii = λ · wdist + (1 − λ) · wpart,
where wdist is based on the Beaton-Tukey weight [13] and wpart is
determined by the value of the location of observed edge point in the
weight map (Figure 2(d)). Our experiments show that the 3D model
fitting precision is improved with the aid of the prior weight map.
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Fig. 3. Illustration of part rectification. (a) The original extracted
frontal regions after 3D fitting. (b) The frontal parts flipped to the
same side. (c) The flipped parts rectified to specific pose and retain-
ing 70% and 50% width respectively.

4. PART RECTIFICATION

Depending on the estimated pose of each vehicle (Figure 1(b)), we
extract the parts after the state-of-the-art 3D model fitting approach.
Before feature extraction and feature comparison, we then rectify the
parts by projecting them into specific angles, such as the front view
or side view.

Figure 3 depicts the process of part rectification. First, parts
may be contrary in different vehicle images due to different view-
points. Therefore, utilizing symmetry of vehicle shape, we flip the
visible parts into the same side before applying feature extraction.
Second, we adopt barycentric coordinates for image warping after
comparing other methods (e.g., global affine transformation). By bi-
linear interpolation and inverted mapping, each point in the projected
view can find the corresponding point in the original image and get
the mapped pixel value. Furthermore, we can remove background
pixels which are out of projected triangles. Third, the visible parts
are under different poses, so there are some distorted regions after
rectification. In other words, warping may enlarge originally small
regions and cause distortion. As a result, removing the regions may
seem redundant but actually improve the performance. Empirically,
we remain 70% and 50% ratio of width to investigate the influence.

5. EXPERIMENTS

In the following, we conduct several experiments on a challenging
dataset to investigate the performance of our content-based retrieval
approach and the comparison of 3D model fitting. To prove our idea
and remove uncertain factors in content-based vehicle retrieval for
leveraging informative parts, our retrieval experiments are based on
extracted parts from the ground truth. But we also show the retrieval
results based on those parts extracted by model fitting in Section 5.3.
Similarly, in order to evaluate the influence of knowledge of part
information for 3D vehicle model fitting, weight maps are generated
from the ground truth.

5.1. NetCarShow300 Dataset

We collect 300 images from NetCarShow.com1 , the NetCarShow300
dataset, where the size is comparable to commonly used vehicle
recognition image datasets. There are 30 vehicle instances. Each
instance has 10 images respectively. Each image contains one
main vehicle of which the frontal part is visible. The vehicles are
presented in different environments, including noisy background,
different illumination, and shadows. Moreover, a vehicle may be
extremely projective, and the surface has reflection. No doubt the
diversity challenges the model fitting and retrieval. Also, vehicle
instances made by the same manufacturer, e.g., Honda Odyssey,

1http://www.netcarshow.com

Honda Pilot, may influence the performance if we focus on retriev-
ing those which belong to the same instance as the input image.
The ground truth of NetCarShow300 is obtained by aligning the
projected models manually. That is, we set several hard-constrained
corresponding points between a projected model and a vehicle im-
age. Given the hard-constrained correspondence, we can update the
shape distribution iteratively by 3D model fitting. Finally, we get
approximate 3D vehicle models and a 2D projected vehicles as the
ground truth.

5.2. Vehicle Retrieval Performance

In this experiment, we apply several descriptors on extracted parts
which are resized to the same number of pixels while keeping the
ratio between height and width. Those retrieved vehicle instances
which have the same label as the query instance are correct. We
compare the mean average precision (MAP) performance on differ-
ent sources including a whole vehicle image and three parts, grilles,
lamps, and the most visible wheel. Then, we do sensitivity tests to
select the late fusion weights and obtain the best parameters.

The following are the descriptors we tested. Firstly, Difference
of Gaussian (DoG) detector and SIFT descriptor are used. Each fea-
ture point are transformed into a visual word according to a code-
book containing 512 entries. Secondly, we use Pyramid Histogram
of Oriented Gradients (PHOG) which computes the histogram of
gradient in a region with several levels. We concatenate the vec-
tors into a 168-dimension descriptor. Thirdly, we adopt the rotation-
invariant feature, Local Binary Pattern Histogram Fourier (LBPHF)
[14]. It applies to a whole region and describes the appearance lo-
cally based on the signs of differences of neighboring pixels. Three
circular neighborhoods are used and result in 478-dimension de-
scriptors.

We collect the leave-one-out results with these descriptors com-
bined with L1 or cosine distance. Table 1 shows that PHOG descrip-
tor with L1 measure (PHOG+L1) outperforms other descriptors and
achieves an MAP of 54.84% with 50% frontal parts composed of
half grille and a lamp. The reason may be that PHOG maintains
the structural consistency, which is benefited a lot by the rectified
parts. Using 70% or 50% part regions which are more undistorted
increases MAP by around 2–6%. Table 1 also indicates that flipping
alignment from “Original Side” to “Same Side” improves the per-
formance by about 5–10%. However, it shows that SIFT descriptor
becomes worse after part rectification. The reason may be that DoG
detector fails to find good feature points and matched visual words
become fewer after the rectification step.

Considering each parts, the grille and lamp are more discrim-
inative than the wheel. The grille part has an MAP of 47% when
retaining 70% rectified region, and the lamp part also achieves 47%
with PHOG. It is obvious that the composition of grilles and lamps
is distinct between vehicle instances, but wheels are not very helpful
when distinguishing the vehicle instances. One explanation is that
the wheel structure may be not consistent in one vehicle instance.
The other reason is that the internal structure of wheel parts may be
blurred and unidentifiable when the vehicle is in motion.

Furthermore, the last row in Table 1 shows the result when we
combine the three parts, grille, lamp, and wheel, to do late fusion:

Sfusion = wgrille·Sgrille + wlamp · Slamp+

max(1− wgrille − wlamp, 0) · Swheel,
(1)

where S means the similarity score, and wgrille and wlamp are
the weights of the grille and lamp respectively. After a sensitivity
test, the achieved MAP is 63.08% on wgrille = 0.4 and wlamp = 0.5,
and it significantly outperforms the previous unfused results.
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Table 1. The performance (in MAP) for vehicle. “Fusion of 70% Grille, Lamp, and Wheel” obtains the best MAP of 63.08% and is much
better than our baseline (32.01% with SIFT+L1). “Rectified Body Same Side” refers to the top image in Figure 1(c). “Original Front Original
Side” and “Original Front Same Side” refer to the Figure 3(a) and (b) respectively. “Rectified Same Side” with “Front”, “70% Front”, and
“50% Front” refer to Figure 3(c). The meanings of the rest rows are similar.

Descriptor+Distance Measure SIFT+L1 SIFT+COS LBPHF+L1 LBPHF+COS PHOG+L1 PHOG+COS WJS+PHOG+L1

Rectified Body Same Side 32.01% 29.30% 21.10% 17.47% 31.61% 23.76% 25.26%
Original Front Original Side 36.96% 32.98% 20.17% 17.54% 22.87% 20.02% 18.14%
Original Front Same Side 39.42% 34.63% 20.08% 17.40% 35.63% 29.87% 29.22%
Rectified Front Same Side 37.95% 34.00% 25.27% 21.23% 48.99% 38.87% 37.80%
Rectified 70% Front Same Side 38.95% 32.99% 26.89% 22.77% 51.76% 41.16% 41.88%
Rectified 50% Front Same Side 29.27% 26.48% 25.58% 22.66% 54.84% 45.05% 44.58%
Original 50% Front Same Side 30.98% 26.88% 20.83% 18.39% 44.96% 35.19% 36.93%
Rectified Grille Same Side 31.85% 27.17% 35.57% 31.64% 45.13% 34.53% 34.40%
Rectified 70% Grille Same Side 30.72% 27.55% 34.30% 30.99% 47.38% 36.87% 31.66%
Rectified Lamp Same Side 13.17% 12.24% 25.77% 23.78% 47.31% 42.21% 28.93%
Rectified Wheel Same Side 13.78% 11.87% 10.80% 9.62% 14.00% 12.13% 9.86%

Fusion of 70% Grille, Lamp, Wheel 34.26% 30.23% 43.24% 38.54 63.08% 53.79% 42.89%

Table 2. 3D Model fitting precision. Weighted Jacobian System
(WJS) outperforms other approaches.

Method APD STD

Initial Location 47.15 6.06

PR(KC) 39.26 9.90

PR
29.59 6.91

(Rigid CPD)

PR
26.53 6.84

(Non-rigid CPD)

JS 34.19 6.31

WJS(λ = 0.3) 18.73 4.66

5.3. Model Fitting Comparison

To compare difference between model fitting approaches, we gen-
erate a testing data with noisy initial position. Then, we measure
average pixel distance (APD) and standard deviation (STD) of visi-
ble vertices between fitted models and ground truth.

In Table 2, PR(Rigid-CPD) (29.59) is better than other ap-
proaches (39.2 and 34.19). Besides, non-rigid transformation im-
proves the performance (26.53) because deformation possibility is
considered even the model does not actually change the shape. In
fact, we find that translating to good location is an important key
for good fitting performance because worse translation may increase
overall distance. Rotation and shape deformation then adjust the
position of each vertex locally and lead to the minor improvement.
Furthermore, with the knowledge of salient parts, we can utilize
these weighing maps to facilitate the 3D model fitting precision. In
the sensitivity test, WJS with λ = 0.3 has the lowest error 18.73
which surpasses other 3D model fitting approaches.

The retrieval performance corresponding to the fitting result
(WJS+PHOG+L1) is shown in Table 1. It has lower MAP than
the ideal case, but it still achieves relatively better performance
than ideal rectified whole image and validates the impact of part
rectification.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we effectively utilize 3D vehicle models for novel
content-based vehicle retrieval. When robust 3D model fitting ap-
proaches are applied, it is possible to extract some discriminative
parts. After part rectification, we demonstrate remarkable perfor-
mance on a challenging dataset. The precision is surely notable and
supports our idea on vehicle part information fusion. Besides, our
investigation shows that the prior knowledge regarding certain parts

has noteworthy impacts on 3D model fitting. While our current ap-
plication is based on given initial pose and location, we are under-
going an approach to automatically generate the information. In the
future, we expect to include vehicle detection and pose estimation
steps, and we can build a structural augmenting content-based ve-
hicle retrieval system on more difficult natural images and leverage
more informative parts to increase the performance.
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