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ABSTRACT
Classifier combination can be used to combine multiple clas-

sification decisions to improve object classification perfor-

mance, and weighted average is a popular method for this

purpose. In this paper we propose to use a graph-theoretic

clustering method to define the weights for SVM classifier

decisions. Specifically, we use the dominant set clustering to

evaluate the difficulty of a kernel matrix for a SVM classifier.

This degree of difficulty is found to be related to the SVM

classification performance and thus used to define the weight

of this classifier. Though simple and intuitive, the method is

shown to be as powerful as more sophisticated methods in

extensive experiments with several datasets of diverse object

types.

Index Terms— classifier combination, weight, graph-

theoretic, object classification

1. INTRODUCTION

Classifier combination is used to combine the strength of mul-

tiple classifiers and produce better performance than individ-

ual classifiers. Based on the level at which they operate, clas-

sifier combination can be categorized into two types. The first

one combines all features into one final feature, which is then

used in classification. The second type, denoted by classifier

fusion in this paper, fuses the decisions or scores of all classi-

fiers and produce one final decision or score. Classifier fusion

is attractive in that different types of classifiers, e.g., SVM

and k-NN, can be combined together. We focus on classifier

fusion in this paper.

Majority voting is the most simple method for combining

the decisions of individual classifiers into one final decision.

This approach counts the number of each label and selects

the label with largest number as the final decision. Major-

ity voting uses only the class labeling information and dis-

cards the probability information of the label. Another ap-

proach is to use in combination the posterior probability of

each training class, i.e., the soft label. Some popular method-

s for this approach include weighted sum, logistic regression

[1], Dempster-Shafer rules [2] and neural networks [3].
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In this paper we present a weighting scheme for SVM

classifier combination based on a graph-theoretic concept.

Specifically, we use dominant set clustering [4] to evaluate

how difficult a kernel matrix is for a SVM classifier to clas-

sify. This degree of difficulty is related to the prediction

accuracy of this classifier and thus the reliability of the soft

labels. Therefore we use the degree of difficulty to define

kernel accuracy and then use kernel accuracy as the weight

of this kernel matrix in combination. These kernel accuracies

are defined separately, i.e., given a kernel matrix, our method

outputs its accuracy. The approach is intuitive and simple, but

shown to be effective in comparison with other combination

methods in experiments.

In Section 2 we present a brief introduction of the domi-

nant set clustering[4]. Section 3 details our method to com-

pute the weight of a classifier with dominant set clustering.

We report the experimental results in Section 4 with compari-

son with other combination methods and literature. Section 5

concludes the paper.

2. DOMINANT SET

There is no formal definition of clustering. However, it’s usu-

ally agreed that a cluster should satisfy the constraints of in-

ternal coherency and external incoherency. In other words,

the clustering of a given dataset is totally determined by the

pairwise similarity distribution of data. The popular k-means

clustering method, however, requires users to input the num-

ber of clusters k.

In [4] the authors present dominant set as a graph-

theoretic concept of clustering. Representing the data for

clustering as an undirected edge-weighted graph, [4] define

a dominant set as a locally maximal subset of vertices that

are internally coherent. After we extract a dominant set,

we remove its included vertices from the graph and extract

another dominant set from remaining graph. Repeating this

procedure until all vertices are included in dominant sets,

we are faced with a partition of all data where each partition

is a dominant set. It’s evident that these dominant sets are

internally coherent and externally incoherent and this, in turn,

means that each dominant set can be regarded as a cluster.

Dominant set based clustering naturally incorporates the

internal coherency and external incoherency properties and
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determines the number of clusters by itself. This property

poses it as an attractive clustering method and explains why

we choose dominant set clustering over other clustering meth-

ods. Given the pairwise similarity matrix of the data to be

clustered, we can easily extract a dominant set with a game

dynamics, e.g., the Replicator Dynamics or the infection and

immunization dynamics [5]. In our implementation we use

the latter for efficiency reason. Due to limited space, we refer

the readers to [4] for details of dominant set extraction.

3. DOMINANT SET CLUSTERING BASED WEIGHT

With a kernel matrix as input, a SVM classifier tries to parti-

tion training images of different classes. If the training images

have high intra-class and low inter-class similarities, it’s easy

for a SVM to partition different classes with a large margin

and produce a high recognition rate. In other words, the pos-

sibility of a kernel matrix producing a high recognition rate

is decided by to which degree it satisfies the high intra-class

and low inter-class similarities constraint. In this paper we

call such a measure of a kernel matrix as its accuracy. Intu-

itively an accurate kernel matrix means a powerful kernel and

reliable outputs, and the corresponding classification results

should be given a big weight in combination.

By training labels we obtain a partition of training exam-

ples where each part corresponds to one class. This is the

ideal partition we expect a SVM classifier to achieve. By

dominant set clustering in the kernel matrix (also a similar-

ity matrix) we obtain another partition of the training exam-

ples, where each part corresponds to a dominant set (cluster).

Note that in dominant set clustering, the clusters satisfy the

constraint of high intra-cluster and low inter-cluster similari-

ty, and that the partition by a SVM classifier satisfy the same

constraints. We see that the partition by dominant set cluster-

ing is the one a SVM is likely to achieve with a large margin.

Now it’s natural to conclude that the accuracy of a kernel ma-

trix can be defined by to which degree the real partition by

dominant set clustering is close to the expected partition by

training labels. We don’t adopt the k-means-like clustering

here based on the fact that different k yields different parti-

tions and it’s not clear which one to choose.

Ideally the two partitions coincidence with each other. In

this case the kernel matrix strictly satisfies the constraint of

high intra-class and low inter-class similarity and we define

the kernel accuracy to be 1. This is not to say that the ker-

nel matrix will produce a 100% recognition rate, but that in

our framework the potential of similarity distribution of the

kernel matrix has been fully explored to obtain an accurate

classification.

Obviously the above ideal case is unlikely to exist in prac-

tice. In fact, the number of dominant sets is almost always

much larger than the number of classes. The single-class

dominant sets contain subsets of one classes and multi-class

dominant sets contain subsets of multiple classes. As a re-

sult, the partitions by dominant set and by training labels have

much overlaps and intersections. In the following we calcu-

late of the closeness of two partitions.

From the perspective of training labels, one class may

be occupied by one single-class dominant or one multi-class

dominant set, or shared by some single-class dominant sets

or some multi-class dominant sets. We will analyze the four

cases one by one and calculate an accuracy for each class. Fi-

nally we use the average of the accuracies of all classes as the

kernel accuracy.

One class occupied by one single-class dominant set is

actually the ideal case. All training examples of the same

class have high similarity with each other and low similarity

with examples of other classes. This is easy for a SVM to

classify and we define the accuracy of such a class to be 1.

One class occupied by one multi-class dominant set mean-

s that while all training examples of the same class are highly

similar to each other, they are also similar to other classes.

Intuitively, a larger share of the class in the multi-class domi-

nant set means fewer examples of other classes are involved,

and thus a bigger accuracy for the class. This observation can

be expressed as

r
′
share =

Ndset in class

Ndset
(1)

where Ndset is the number of examples in the dominant set,

and Ndset in class is the number of examples in the overlap of

the class and the dominant set. It’s easy to see that for this

case and the first case, the kernel accuracy can be expressed

as r
′
share.

If one class is shared by some single-class dominant set-

s, no examples in the class are very similar to other classes.

However, more than one single-class dominant sets also im-

ply that some examples in the class are not very similar to

others in the same class. Obviously this will impact on the

classification performance. If one of these dominant sets is

very large and all others are very small, this case looks simi-

lar to the first one and the negative effect is fairly small. On

the other hand, if all dominant sets are of roughly the same

size, the negative effect will be rather notable. We express

this negative effect as a factor

rclass =

√√√√
∑M

i=1(N
(i)
dset)

2

(
∑M

i=1 N
(i)
dset)

2
(2)

where M is the number of dominant sets in the class, and

N
(i)
dset is the number of examples in the i-th dominant set. In

this case the kernel accuracy can be represented by rclass.

Note that the first case can also be accommodated by this ex-

pression.

In case of one class shared by some multi-class dominant

sets, we must take into account all the factors involved in the

above three cases, i.e. r
′
share and rclass. Note that the expres-

sion of r
′
share in (1) is only for the case of one dominant set.
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We extend it to be

rshare =

∑M
i=1 N

(i)
dset in class∑M

i=1 N
(i)
dset

(3)

Then a simple expression of one class’s accuracy can be se-

lected as

Pclass = rsharerclass (4)

It is easy to verify that this expression is applicable to all four

cases.

Now we can define the weight of kernel based on its accu-

racy. In implementation we use wlabel =
∑

Pclass

Nc
to compute

the weight for each kernel, where Nc is the number of class-

es. After calculating the accuracy of each kernel matrix, we

can use it as the weight in kernel matrix combination. In im-

plementation we use w4
label instead of wlabel as the weight to

highlight the difference between different kernels.

4. EXPERIMENTS

We test our weighting scheme in classifier combination with

SVM classification experiments. In all experiments the reg-

ulation parameter C is fixed to be 1000. The multi-class

SVM is trained in a one-versus-all mode. When distances

are used to build kernels, the transformation is in the form

of k(x, y) = exp(−d−1
0 d(x, y)) where d is the pairwise dis-

tances and d0 is the mean of pairwise distances. The experi-

mental setups and accuracy measures are selected to be same

as the literatures used for comparison. The experiments are

repeated 10 times with different training-testing splits and the

average of recognition rates are reported. The following 3

diverse datasets are adopted in experiments.

The Oxford Flower-17 dataset [6] is composed of flower

images of 17 categories with 80 images in each category. For

ease of comparison, we use the distance matrices and the 3

predefined training-testing splits provided by the authors for

combination. The 7 kernels are from [6] and [7]. We report

the overall accuracy and comparison with literature in Table

1.

The Event-8 dataset [8] consists of images from 8 sports

events categories with 130 to 250 images in each category.

Following the setup in [8], we randomly select 70 images per

class as training and another 60 images as testing, and report

the 8-class overall recognition rate. The Scene-15 dataset [9]

contains images from 15 categories with 200 to 400 images

in each category. We follow the experimental setup in [9],

i.e., randomly select 100 images per class as training, with all

the others as testing, and report the mean recognition rate per

class.

For Event-8 and Scene-15, we use the following features

to build kernel matrices.

PHOG Shape Descriptor. Oriented (20 bins) and unori-

ented (40 bins) PHOG [10] are constructed from level 0 to

3. Different from the implementation in [10], in this paper

Table 1. Flower-17 recognition rates and comparison.

method accuracy

best single 70.6 ± 1.6

average 85.8 ± 2.7

this paper 85.7 ± 2.4

[7] 88.3 ± 0.3

[16] 85.5 ± 3.0

[17] 82.6 ± 0.3

Table 2. Event-8 and Scene-15 recognition rates.

Event-8 Scene-15

method accuracy method accuracy

best single 84.4 ± 1.7 best single 79.6 ± 0.4

average 85.1 ± 1.1 average 81.9 ± 0.6

this paper 88.9 ± 0.9 this paper 84.8 ± 0.4

[18] 84.2 ± 1.0 [19] 86.7 ± 0.4

[8] 73.4 [18] 84.1 ± 0.5

[9] 81.4 ± 0.5

the descriptor of level L is just composed of its 2L windows,

with no addition from lower levels.

Bag of Visual Words. We use SIFT descriptors[11] on

16×16 patches with spacing of 8 pixels to build a 500-bin vo-

cabulary. The descriptors are extracted in gray (128d), HSV

(384d) and CIE-Lab (384d) spaces for the Event and in gray

space for the Scene. The visual words histograms are built in

a pyramid from level 0 to 1.

Locally Binary Patterns. The basic locally binary pat-

terns (LBP) [12] are extracted and clustered to create a de-

scriptor for one image. The descriptor length is 256 and we

built it from level 0 to 2.

Gray Value Histogram. We also use the 64-bin gray val-

ue histograms from level 0 to 3.

Gist Descriptor. The gist descriptor [13] are extracted in

a pyramid from level 0 to 1.

Self-similarity Descriptor. Self-similarity descriptors

[14] of 30 dimensions (10 orientations and 3 radial bins) are

extracted and quantized into a vocabulary of 500 bins. The

histogram is built from level 0 to 1.

Gabor and RFS filters. We use two texture features: Ga-

bor and RFS filters [15] to build histograms (500 bins) from

level 0 to 1.

The selected distance measures are χ2 distance and Earth

Mover’s Distance (EMD). Altogether we use 58 kernels for

Event-8 and 50 kernels for Scene-15 in combination. We re-

port the average results and comparison in Table 2.

On Oxford flower dataset, our method produces better re-

sults than LP-β method in [16] and the MKL methods in [17]

and [6]. These comparisons indicate that with proper defini-

tion, our simple, intuitive kernel accuracy weighting can be
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as powerful as the other sophisticated optimization method-

s. From Table 2 we observed that while average combination

is better than the best single feature, our weighted combina-

tion further improve the results considerably for both dataset-

s. These results imply that with relatively simple features and

distance measures, our combination method produces a sig-

nificant improvement on classification performance.

5. CONCLUSION

We proposed a weighting scheme for classifier combination

in object classification based on dominant set clustering. We

partition the training images by enumerating all the dominant

sets in a kernel matrix. The partition is used to evaluate how

difficult the kernel matrix is for a SVM classifier, and thus

the possibility of producing a high recognition rate. Based on

this evaluation, we define the accuracy of a kernel matrix and

use it as the weight in classifier combination. We tested the

method in experiments with several datasets of diverse objec-

t types and observed considerable improvement over bench-

mark combination methods. The results are also comparable

to the state of the art obtained with more sophisticated meth-

ods.
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