
TWO-STAGE SPARSE GRAPH CONSTRUCTION USING MINHASH ON MAPREDUCE

Liang-Chi Hsieh� Guan-Long Wu� Wen-Yu Lee� Winston Hsu†

� Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan
†Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan

ABSTRACT

Image graph attracts attention from researchers due to the empiri-
cal success of graph based semi-supervised learning (SSL) methods
and tasks such as image clustering, image navigation. Despite its
simple structure, overwhelming scale of online images makes image
graph construction a difficult problem. The challenge lies in time-
consuming computation, and the difficulty of storing, processing the
resulted graphs of huge size. We propose a novel method of image
graph construction on MapReduce for large-scale data. The method
consists of two stages: the first stage separates images into over-
lapping groups called image pools by using hash method, and the
second computes pairwise similarities for pairs of images that are
grouped into common pools. Both stages are performed on MapRe-
duce. Our experiments on large-scale data show that the proposed
method generates more sparse image graphs that reserve same or
improved accuracy when comparing with previous method.

Index Terms— Image graph, hash, sparse graph

1. INTRODUCTION

Image graph attracts much attention from researchers due to the em-
pirical success of graph based semi-supervised learning (SSL) meth-
ods [6][5][17]. Image graph is also helpful in other tasks such as
image clustering, image navigation. Image graph uses the metaphor
of nodes and links between nodes to represent images and relations
among images.

Despite the simplicity of the structure of image graph, over-
whelming scale of available image data gives challenge to the con-
struction of image graph. Specially, the challenge lies in two as-
pects: time-consuming computation for processing large-scale im-
age data, and the difficulty of storing, processing and retrieving the
huge amount of resulted image graphs. In this research, we propose
a novel method of image graph construction for large-scale image
data which leverages the parallel computing power of MapReduce
[4] and uses hash method to produce more sparse graph that reserves
accuracy.

The proposed method consists of two stages as shown in Fig-
ure 1. Initially, the first stage uses hash method to separate images
into coarse groups called image pools. We use MinHash [1] to fit
our sparse image representation and similarity measure. For im-
proving the recall of hashing results, a multiple-table approach of
MinHash is applied to generate overlapping image pools. In the sec-
ond stage, the pairs of images that have been hashed into common
image pools, are computed for pairwise similarities to construct im-
age graph. Both two stages are performed on MapReduce platform.
Since most unimportant links in graph are filtered in hashing process,
we find that the graphs generated by our method are more sparse
(i.e., occupying less storage space) but reserve about the same or
improved accuracy.

Fig. 1. The proposed two-stage sparse image graph construction
method. First stage initially divides images into overlapping subsets
called image pools. In the second stage, pairs of images divided into
same image pools are computed for pairwise similarity to construct
image graph. Both stages are performed on MapReduce platform to
scale up for large-scale images. Resulted sparse graph can be used
in graph based learning, image clustering and navigation.

Our main contribution in this work is to propose a novel method
of image graph construction which generates more sparse image
graph that reserves expected accuracy when comparing with previ-
ous method. To demonstrate our method, we evaluate it on a large-
scale data set of 550k images and show the effectiveness and effi-
ciency.

The paper is organized as follows. In Section 2 we review related
works of graph construction. We introduce the two-stage graph con-
struction method in Section 3. The experiments for demonstrating
the proposed method on large-scale data sets are showed in Section
4. We will give our conclusion in Section 5.

2. RELATED WORKS

Compared to label inference in graph based SSL methods, cru-
cial graph construction phase attracts less attention until recently
[11] [16]. Among proposed graph construction methods, k-Nearest
Neighbor (k-NN) and ε-neighborhood are commonly used in graph
based SSL methods. Jebara et al. [11] argued the importance of
regular graphs for graph based SSL methods and proposed graph
construction method using b-matching. While the graph construc-

1013978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

I1

I2

I3

}I4

Fig. 2. Illustration of creating image pool by using MinHash tech-
nique. Four images I1, I2, I3, I4 are hashed into buckets after apply-
ing three MinHash tables M1, M2 and M3, respectively. Because
I1 and I2 are hashed into same bucket in M1 table, they are put in
same image pool. Later they are computed pairwise similarity. On
the contrary, I3 between I1, I2 or I4 will not be computed.

tion using b-matching shows empirical advantage in [11], theoretical
guarantees for the advantages of b-matching are not provided as sug-
gested in [11] [16]. Furthermore, high computational complexity of
b-matching is one of the major concerns, especially when applying
on large scale data.

The simple but powerful parallel computing provided by MapRe-
duce model [4] has proliferated in many domains from text process-
ing to machine learning since the need to learn for growing large
scale data becomes urgent. Based on the previous work to scale up
all pairs similarity search [7], Elsayed et al. [8] proposed to compute
pairwise document similarity in large data collections using MapRe-
duce. Their approach uses two MapReduce jobs. The first job parses
tokens in documents and generates inverted lists. The second job
calculates partial pairwise similarities for pairs of documents in each
list and sums those partial similarities for each pair to obtain final
pairwise document similarity.

Lin introduced three MapReduce algorithms in [12] to explore
the problem of computing pairwise similarity on documents. The
algorithms are basically based on inverted list approach similar to
[8], but add approximation strategies to improve the efficiency of
graph construction. However, those algorithms can not be used to
improve effectiveness of resulted graphs. In addition, the issue of
graph sparseness has not been discussed in [12]. Graph sparseness
impacts graph learning in effectiveness and efficiency.

3. TWO-STAGE GRAPH CONSTRUCTION USING
MINHASH

We propose two-stage graph construction using MinHash in this sec-
tion. The idea is motivated by [14] that proposed to cluster high di-
mensional data. Similar to [14], we also divide images into overlap-
ping subsets and perform subsequent computation within each sub-
set. However, we consider the scalability issue in both stages.

3.1. Creating Image Pools by Using MinHash

We deploy LSH based approach to efficiently divide images into
overlapping subsets we call image pools. LSH [10] provides an ef-
ficient and effective technique for finding near neighbors in large
scale data set. Many LSH schemes are known for different distance
or similarity measures. In this work, we represent images as high di-
mensional feature vectors by using the “bag of words” model. Since

those features are very sparse, we decide to use Jaccard coefficient
as similarity measure oft images.

MinHash [1] is a LSH scheme for using Jaccard coefficient as
similarity measure. Under the “bag of words” model, it assigns
image pairs into same hashing bucket with the probability propor-
tional to the overlapping between the features of images. In fact,
MinHash can be thought as a probabilistic clustering method that
clusters two images Ii and Ij into same cluster with the probabil-

ity S(Ii, Ij) =

∣
∣
∣WIi

∩WIj

∣
∣
∣

∣
∣
∣WIi

∪WIj

∣
∣
∣

that equals to overlap similarity of fea-

tures (WIi and WIj) in their features. On purpose of computing the
probability S(Ii, Ij), MinHash method randomly permutes the set
of features of images. For each image Ii, the hash value h(Ii) is the
index of the first features of Ii in the permutation.

In order to tackle the problem of performing MinHash on large
scale images, we apply MapReduce based MinHash proposed by
Das et al. [3] for online collaborative filtering. Its main idea is to use
random seed values to replace random permutations in MinHash, be-
cause it is not feasible to generate random permutations over large
word sets to compute MinHash values under a distributed environ-
ment.

Images applied MinHash are divided into non-overlapping buck-
ets. Because the high precision and low recall of MinHash method,
simply computing pairwise similarity for images within common
buckets will generate graphs that are too sparse to be useful in tasks
such as learning.

In order to improve that, we can repeat to perform MinHash on
images and see each MinHash performing as a hashing table. Al-
though the buckets in a hashing table are non-overlapping, overlap-
ping can be happened between buckets from different hashing ta-
bles. By joining overlapping buckets from different hashing tables,
we create the overlapping image subsets called image pools.

For example, as illustrated in Figure 2, given 4 images I1, I2,
I3 and I4, they are hashed into buckets {M1B1, M2B5, M3B7},
{M1B1, M2B6, M3B8 }, {M1B2, M2B4, M3B9} and {M1B3,
M2B5, M3B7} after applying 3 MinHash tables M1,M2,M3, re-
spectively. It is shown that I1, I2 are hashed into same bucket M1B1

and I1, I4 are hashed into same bucket M3B7. By joining M1B1

and M3B7 overlapping with I1, we create image pool L1.

By tuning the times of performing MinHash, we can adjust the
sparsity and accuracy of generated graphs. Related evaluations are
shown in Section 4.

When we assume that in each MinHash process two similar im-
ages and two dissimilar images are hashed into same bucket with
probability p (positive result) and q (negative result), respectively.
Assume Nh is the number of hashing tables used. When Nh in-
creases, (1−p)Nh getting smaller that indicates better performance,
but (1 − q)Nh also getting smaller that means worse performance.
Generally, for a LSH scheme, similar data are more likely hashed
into same bucket (p > (1 − p)) and dissimilar data are fallen into
different buckets with higher probability ((1−q) > q). Thus, we can
expect that by applying multiple hash tables to create image pools,
the performance of resulted graph becomes better and then worse
as the the number of tables Nh increases. Because more compu-
tation time is needed for more hash tables, it suggests that we have
trade off between graph effectiveness and efficiency in our two-stage
graph construction method.

Chum et al. [2] proposed using MinHash to compute approxi-
mate similarity in solving the problem of near duplicate image and
video-shot detection. It is noteworthy that they also use multiple
hash tables to improve the precision of image retrieval. For example,
if there are m hash tables, the retreival method estimates similarity

1014

1: procedure Reduce (〈ii, ij〉, [wij1, wij2])
2: Input:

Pair of image ids 〈ii, ij〉,
List of weight products [wij1, wij2]

3: if InCommonPools(〈ii, ij〉) = true then
4: sim = 0
5: for all wij ∈ [wij1, wij2] do
6: sim = sim+ wij

7: end for
8: EMIT(〈ii, ij〉, sim)
9: end if

Fig. 3. Pseudo-code of computing pairwise similarity on MapRe-
duce for integrating image pools (only reduce function here).
The details about map function, such as the computation of
[wij1, wij2], can refer to [8].

only for image pairs that have been fallen into same buckets for all
m hash tables. However, we use multiple hash tables to improve re-
call and reduce the sparness of generated image graphs. In the other
words, our method estimates similarity for image pairs that are fallen
into at least a same bucket in any of the m hash tables.

3.2. Computing Pairwise Similarity by Integrating Image Pools

Our pairwise similarity computation method is motivated by the
MapReduce based approach in [8] that converts text documents into
inverted lists and computes pairwise similarity for documents. We
apply [8] to compute image similarity but extend it by integrating
image pools to filter noisy links of graph.

Most simple approach to integrate image pools is to directly ap-
pend it into inverted list. But it is not difficult to recognize that the
bottleneck would be accompanying intermediate output and heavy
disk operation, especially for a distributed model like MapReduce.
Growing intermediate output between mapper and reducer functions
downgrades computing efficiency as applying on larger data. Thus
we propose to integrate image pools into pairwise similarity compu-
tation in the reduce step of [8]. The algorithm is shown in Figure 3,
but omits the unmodified map step since it is a similar step as [8] and
[12]. At the line 2 in Figure 3, the function InCommonPools checks
if the pair of images is divided in common image pool. If so, then
their products of feature weights are sum up and final similarity is
emitted.

4. EXPERIMENTS

We perform experiments to validate our proposed two-stage graph
construction on two data sets:

Flickr550 data set: We take the large-scale image data set
Flickr550 [18] as our experiment data that contains 540321 images.

Flickr11k data set: Flickr11k [9] is a data set consisting of
11282 medium resolution (500x360) images. This is a subset of
Flickr550 data set. It consists of 1282 ground truth images in 7 query
categories 1 and 10k images randomly sampled from Flickr550.

Those images are represented in both visual and textual high di-
mensional features. We deploy visual word (VW) as visual features
to compute similarity of images. In order to generate VW, we use
Difference-of-Gaussian (DoG) to detect feature points and describe
them with SIFT [13]. Detected descriptors are then quantized into
10K clusters using k-means method. The centroids of clusters are

1colosseum, eiffel tower, golden, torre pendente di pisa, starbucks, tower
bridge, triomphe

defined as VWs. A feature point in image is assigned to a VW that is
nearest to the feature point’s descriptor. For textual representation,
we adopt web-based kernel function [15] and Google search engine
for perform query expansion to represents image in textual feature
of 91004 dimension.

We implement MapReduce algorithms in this work in Java on
Hadoop platform that is an open source implementation of MapRe-
duce programming model. Those experiments are run on two middle
Hadoop clusters that consist of 18 and 24 commodity machines, re-
spectively. Version 0.20.1 Hadoop is used on both clusters.

4.1. Result and Discussion

We generate visual and textual graphs for Flickr11k using both one-
stage method described in [8] (ONE) and our two-stage image graph
construction method (TWO) approach. Graphs are measured for per-
formance by using a retrieval based approach. Given a graph, each
image in graph is taken as a query and its top k (k = 1000 in this
work) near neighbors are retrieved as a ranking list. Average preci-
sion (AP) can be computed for the ranking list. By averaging AP
values for all images in graph, we obtain MAP performance for the
graph. We use tf-idf threshold to filter out image feature weights be-
fore computing pairwise image similarity. The tf-idf based feature
filtering helps removing insignificant features and thus decreases
graph size for fitting disk capacity of computing clusters.

First we want to compare the performance of graphs generated
by ONE and TWO methods. Table 1 shows the comparison by vary-
ing t, the number of MinHash tables used by TWO. Observed from
the table, using more hash tables helps MAP at the beginning. While
MAP downgrades after it peaks at t = 6, TWO still generates graphs
with competent performance.

By using MinHash method to create image pools and computing
pairwise similarity within each image pool, the graphs of TWO are
much more sparse than ONE. The advantage of TWO is significant
as we take sparseness, graph size and MAP into account at the same
time. For example, under tf-idf threshold 0.0003, the Flickr11k vi-
sual graph of ONE occupies 280MB disk space. The graph with
same configuration generated by TWO using 6 MinHash tables only
accounts for 27MB. But TWO graph obtains a better MAP 0.23 than
0.21 of ONE. In order to represent sparseness of graph, we define
it as e/n2 where n is the number of images and e is the number of
edges. The sparseness of the ONE graph and TWO graph is 0.31
and 0.03, respectively. The result suggests that graphs generated by
our TWO method are more sparse but have higher performance than
ONE method. While it is feasible to increase td-idf cutting thresh-
old to increase sparseness of graphs generated by ONE, MAP of
graphs will decrease at the same time. We illustrate the relation be-
tween graph sparseness and MAP in Figure 4, for graphs of ONE
and TWO. The curve of ONE in the figure varies by changing tf-idf
cutting threshold; increasing threshold raises graph sparseness but
decreases MAP. The curve of TWO varies by changing the number
of MinHash tables; increasing the number of table in a limited range
lowers sparseness but augments MAP. Beyond a particular number
of tables, using more tables only makes graph more dense but has no
contribution to MAP. Observed from Figure 4, the graphs of TWO
are much more sparse than ONE at a same MAP. On the other hand,
when they are similar in sparseness, the graphs of TWO have higher
MAP.

For efficiency, while our methods generate more intermediate
outputs between MapReduce jobs, the scale of Flickr11k does not
manifest the difference in computing time between ONE and TWO.
For comparing efficiency, we compare the construction time of ONE

1015

Fig. 4. The relation between MAP and graph sparseness (from most
sparse 0 to most dense 1) for ONE and TWO. We show the curves
of graphs generated with varying hashing table number (t = 1 ˜9)
using our method for Flickr11k visual features under two thresholds.
The graphs of ONE curve are generated by varying tf-idf cut-off
thresholds.

ONE TWO, t = 2 TWO, t = 4 TWO, t = 6 TWO, t = 8

MAP 0.21 0.21 0.23 0.23 0.22

Table 1. MAP comparison between Flickr11k visual graphs gener-
ated by ONE method and TWO under same tf-idf threshold. t is the
number of MinHash tables used in TWO.

and TWO method on Flickr550 visual features. Because the high
efficiency of MinHash technique, the time of applying MinHash on
the two data sets can be ignored, compared to graph construction
time. We show the results of TWO (t = 8) and ONE for Flickr550
visual feature at tf-idf threshold 0.001 in Table 2. Although TWO
method adds extra overhead and has slightly longer computing time,
it returns better MAP and smaller graph size.

5. CONCLUSION

Image graph attracts attention from researchers in recent years due
to the success of graph based learning methods. Image graph is
also helpful in image clustering, image navigation applications. Al-
though it is easy to construct image graph for dozens of images, the
overwhelming scale of online images makes image graph construc-
tion a non-trivial problem. In this work, we propose a two-stage
graph construction method based on MapReduce. We demonstrate
the effectiveness and efficiency of the proposed method on two large

Method Load Inverted list Pairwise MAP Graph size

ONE 0 sec. 1137 sec. 859 sec. 0.029 7270MB
TWO, t = 8 2046 sec. 1080 sec. 645 sec. 0.031 74MB

Table 2. Computation time of different stages for ONE and TWO (t
= 8) methods on Flickr550 visual graph under same tf-idf threshold.
Load is the step to load image pools. While TWO method brings
overhead of efficiency when loading image pools, it creates the graph
with much smaller size and higher MAP.

scale image data sets. The experiment results show that the pro-
posed method can generate more sparse image graph (i.e., occupy-
ing less storage space) that still has about the same or even higher
performance when comparing with baseline graph. The smaller the
generated image graph, the less the load on later learning method to
process the graph.

6. REFERENCES

[1] A. Broder. On the resemblance and containment of documents.
In SEQUENCES, pages 21–29, 1997.

[2] O. Chum, J. Philbin, M. Isard, and A. Zisserman. Scalable near
identical image and shot detection. In Proceedings of the 6th
ACM international conference on Image and video retrieval,
2007.

[3] A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news
personalization: scalable online collaborative filtering. In
WWW, pages 271–280, 2007.

[4] J. D. et al. Mapreduce: Simplified data processing on large
clusters. In OSDI’04, 2004.

[5] J. L. et al. Video search re-ranking via multi-graph propaga-
tion. In ACM Multimedia, 2007.

[6] J. T. et al. Structure-sensitive manifold ranking for video con-
cept detection. In Proceedings of the 15th international con-
ference on Multimedia, pages 852–861, 2007.

[7] R. J. B. et al. Scaling up all pairs similarity search. In WWW,
pages 131–140, 2007.

[8] T. E. et al. Pairwise document similarity in large collections
with mapreduce. In ACL-08: HLT, pages 265–268, 2008.

[9] Y.-H. K. et al. Query expansion for hash-based image object
retrieval. In ACM Multimedia, pages 65–74, 2009.

[10] P. Indyk and R. Motwani. Approximate nearest neighbors: to-
wards removing the curse of dimensionality. In STOC, pages
604–613, 1998.

[11] T. Jebara, J. Wang, and S.-F. Chang. Graph construction and
b-matching for semi-supervised learning. In ICML, pages 441–
448, 2009.

[12] J. Lin. Brute force and indexed approaches to pairwise docu-
ment similarity comparisons with mapreduce. In SIGIR, pages
155–162, 2009.

[13] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60 (2):91 – 110, 2004.

[14] A. McCallum, K. Nigam, and L. H. Ungar. Efficient cluster-
ing of high-dimensional data sets with application to reference
matching. In ACM SIGKDD, pages 169–178, 2000.

[15] M. Sahami and T. D. Heilman. A web-based kernel function
for measuring the similarity of short text snippets. In Proc.
WWW, 2006.

[16] P. P. Talukdar. Topics in graph construction for semi-
supervised learning. Technical report, University of Pennsyl-
vania, 2009.

[17] C. Wang, F. Jing, L. Zhang, and H.-J. Zhang. Image annotation
refinement using random walk with restarts. In ACM Multime-
dia, pages 647–650, 2006.

[18] Y.-H. Yang, P.-T. Wu, C.-W. Lee, K.-H. Lin, and W. H. Hsu.
Contextseer: Context search and recommendation at query
time for shared consumer photos. In ACM Multimedia, 2008.

1016

