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ABSTRACT

Human silhouette reconstruction has a wide range of appli-

cations in motion analysis, object segmentation and tracking,

etc. In this paper, we propose a human silhouette reconstruc-

tion method based on the exploration of temporal informa-

tion. Given a test silhouette, the proposed method aims to find

its reliable templates for reconstruction by using the intrinsic

temporal relationship among different frames. To effectively

obtain such templates, we propose an adaptive criterion based

on the non-negative least square optimization. Experimental

results on two challenging datasets demonstrate the effective-

ness of our method.

Index Terms— Human silhouette reconstruction, tempo-

ral constraint, shortest path searching, level set

1. INTRODUCTION

Typically, three types of models are used to represent the sil-

houettes, including snakes [1], skeletons [2] and level sets [3].

Due to being numerically stable and capable of handling non-

rigid topological shape changes, level sets are widely used to

describe human silhouettes. Based on the level set representa-

tion, a variety of methods have been proposed to reconstruct a

test silhouette given the training data in the presence of noise,

occlusion or clutter. However, robust human silhouette recon-

struction is actually a challenging task due to limited training

data, unpredictable noise disturbance, occlusion and human

silhouettes deformation, etc.

Recently, much work has been done in human silhouette

analysis [4–7]. Cremers [4] proposes a nonlinear dynam-

ic model for level set segmentation. Based on autoregres-

sion, the proposed model is able to approximate a particu-

lar silhouette at a given time using the silhouettes observed

at previous time instances. To explore the intrinsic nonlinear

structures from the training samples, some manifold learn-

ing (ML)-based methods [5–7] were proposed. Prisacariu
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and Reid [5] learn a low-dimensional latent space of train-

ing samples using Gaussian Process Latent Variable Models

(GPLVM). Elgammal and Lee [6, 7] use locally linear em-

bedding (LLE) method to construct a human silhouette man-

ifold. For each test sample, they find its nearest neighbor in

the manifold and project it back to the original sample space

for reconstruction. In order to ensure the smoothness of the

learned manifold, ML-based methods usually require a large

amount of regular training data, which is usually impractical

in real applications. Besides, they often ignore the temporal

constraint information in finding the nearest neighbor, result-

ing in inaccurate reconstruction. In this paper, we will show

that the temporal constraint information plays an important

role in reconstructing a human silhouette.

We propose a temporal constraint-based human silhouette

reconstruction (TC-HSR) method which focuses on human

silhouette reconstruction in a walking cycle. The proposed

method is based on a “shortest paths” searching scheme for

finding reliable templates to restore a test sample. Our contri-

butions lie in three aspects. 1) We introduce temporal infor-

mation into the process of finding the reliable templates for

reconstruction. The reliable templates can be robustly found

even when the test sample is seriously corrupted. 2) To ef-

fectively obtain such templates, we develop a method that

searches for the “shortest paths” linking the candidate tem-

plates of the consecutive test frames. Our method can also

find the reliable templates in different walking cycles. 3) We

propose a non-negative least square (NNLS)-based criterion

to effectively detect the abnormality of the test sample. Based

on the abnormality detection (AD) result, a discriminative cri-

terion is defined to adaptively find the reliable templates for

each test sample.

2. TEMPORAL CONSTRAINT-BASED HUMAN
SILHOUETTE RECONSTRUCTION

2.1. Problem definition
We first have a training silhouette sequence {Xi}Ni=1

and their

corresponding frame number sets {IXi }Ni=1
. Given a test sample

Yt at time t which may be seriously corrupted, our objective is
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to reconstruct it using its K < N reliable templates X∗j , where

X∗j ∈ {Xi}Ni=1
, j = 1, . . . ,K. In what follows, each silhouette

sample is represented by the level set signed distance function

(SDF) [3] which is flattened into a column vector and denoted

by Φ. Typically, the test sample can be approximated by a set

of its reliable templates:

ΦYt ≈
K∑

j=1

wjΦX∗j (1)

where wj is the reconstruction weight and ΦX∗j is the fea-

ture vector of X∗j . The focus of this paper is on how to find

the reliable templates from the training samples. Usually,

when the test sample is noisy or seriously corrupted, the tem-

plates found simply by K nearest distances are not reliable be-

cause the distances do not reflect the true affinity relationship

between them. However the sequences often include some

useful temporal smoothness constraints among consecutive

frames. TC-HSR effectively finds the reliable templates for

reconstruction by considering temporal information.

2.2. Adaptive reliable template construction

If the current test sample Yt is mildly corrupted, templates

found by smallest distances can be directly used to restore

Yt. Otherwise, we use TC-HSR to find the reliable templates

of an abnormal (very noisy or seriously corrupted) test sam-

ple. Thus, we propose a non-negative least square (NNLS)-

based [8] criterion for abnormality detection (AD). In princi-

ple, NNLS uses a linear combination of all the training sam-

ples X to approximately represent the test sample Yt:

min
c
‖ΦYt − BX · c‖22 s.t. c ≥ 0 (2)

where ‖ · ‖2 is the L2-norm, c is the non-negative coefficient

vector and BX = (ΦX1
,ΦX2
, · · ·ΦXN ) is the corresponding fea-

ture collection of all the training samples {Xi}Ni=1
. The larger

the residual r = ‖ΦYt −BX ·c‖2, the more likely the test sample

could be abnormal. Motivated by this observation, we use a

threshold T to discriminate these two cases.

When r < T , i.e. the test sample Yt is determined to be

normal, we find its templates based on the following L2-norm

distance directly:

d(Xi,Yt) = ‖ΦXi − ΦYt‖2 (3)

In other words, we choose the K nearest neighbors as the top

K reliable templates {X∗j }Kj=1 for reconstructing Yt.

When r ≥ T , we concatenate the test sample Yt with its

previous L adjacent frames to form a small test sequence S,

and then introduce temporal smoothing to address this case.

Without loss of generality, let us take L = 2 for example. As a

result, we have a test sequence denoted as (Yt−2,Yt−1,Yt). For

convenience, we let TS(Yt−2), TS(Yt−1) and TS(Yt) denote the can-

didate template-sets, each of which is indexed by a collection

of frame numbers.

Two steps are taken to obtain these candidate template-

sets (i.e. TS(Yt−2), TS(Yt−1), TS(Yt)) for each frame in S. The

Fig. 1. A flow diagram for finding the reliable templates. The bot-

tom part intuitively shows the “shortest paths” searching.

first is to collect the candidate templates by 1) selecting the

training samples with the top few non-negative reconstruc-

tion coefficients in Eq. (2), as well as 2) finding the candidate

templates with the smallest distances according to Eq. (3). In

addition to computing the candidate templates for each frame

in S, the abnormality detection is also performed based on

its NNLS residual. The obtained candidate templates of the

normal test sample are usually more reliable than the abnor-

mal one, and the consecutive frames often have the similar

candidate templates. Thus the second step is to share the can-

didate template-sets of the normal samples with the candidate

template-sets of the abnormal ones. If none of the samples

in S is normal, then candidate template sharing does not oc-

cur, and as a result, the candidate template-sets obtained in

the first step are used as final.

After obtaining the three final candidate template-sets

TS(Yt−2), TS(Yt−1) and TS(Yt), we aim to find the shortest frame

number paths linking Yt−2, Yt−1 and Yt:

c∗ → b∗ → a∗ = arg min
{(c,b,a)|c<b<a}

{(b − c) + (a − b)} (4)

= arg min
{(c,b,a)|c<b<a}

{a − c}

where c, b, a are frame numbers belonging to the three can-

didate template-sets, such that c ∈ {TS(Yt−2)} ⊆ {IXi }Ni=1
, b ∈

{TS(Yt−1)} ⊆ {IXi }Ni=1
, a ∈ {TS(Yt)} ⊆ {IXi }Ni=1

. We sort the frame

number paths based on Eq. (4) in an ascending order and

choose the top K frames associated with Yt as the final reli-

able templates (denoted by {X∗j }Kj=1). If no such paths could be

found, we directly choose the reliable templates from TS(Yt).

By analogy the other cases of L can be easily generalized.

Fig. 1 shows the illustration of finding the reliable templates.

2.3. Silhouette reconstruction using the reliable templates

After obtaining the reliable templates {X∗j }Kj=1, we reconstruc-

t the current test sample Yt by a weighted combination of

1006



{X∗j }Kj=1. The reconstruction is formulated as Eq. (1) where-

in the weight is calculated as:

wj =
exp[−d2(X∗j ,Yt)]

∑K
j=1 exp[−d2(X∗j ,Yt)]

(5)

and d(X∗j ,Yt) is computed by Eq. (3). The obtained recon-

struction result (denoted by ΦỸt
) is re-initialized to stay s-

mooth enough to approximate the signed distance function

(SDF) and then added to the test sequence for the reliable tem-

plates construction of the subsequent frames instead of ΦYt .

3. EXPERIMENTS

To verify our method, we have conducted several experiments

on two public gait datasets: OU-ISIR dataset1 and CASIA

dataset2. The OU-ISIR dataset comprises gait silhouette se-

quences of persons walking on a treadmill with varying speed

(from 2km/h to 7km/h with 1km/h interval). Each silhouette

image is normalized and registered to 138× 88 pixels. The

CASIA dataset consists of color image sequences of persons

walking outdoor more freely. For each frame, the region of

interest surrounded by contour is extracted and normalized to

158 × 93 silhouette image. Because of the limited number of

training samples, CASIA dataset is more challenging.

We evaluate the silhouette reconstruction performance

of three methods, including the manifold learning based sil-

houette reconstruction (MLSR) [7], the single frame based

silhouette reconstruction (SFSR) and our TC-HSR method.

MLSR [7] finds the nearest neighbor of the test sample in

the manifold space and re-maps it to accomplish the recon-

struction task. SFSR is based on the current single-frame

neighbors search without considering the temporal informa-

tion. To quantitatively evaluate the performance of these three

methods, we introduce a reconstruction score based on the

PASCAL VOC overlap ratio (between the ground truth and

the reconstruction results).

We show several silhouette reconstruction examples in

Fig. 2. Parameter settings of our method are as follows: the

threshold T for abnormality detection is 260, the parameter K
is chosen as 3. We consider previous two adjacent frames in

our experiments (i.e. L = 2). For each dataset, three cases are

evaluated: 1) the test sample is normal as shown in the top

row of Fig. 2 (a) and Fig. 2 (b); 2) the test sample is corrupt-

ed moderately (the second row of Fig. 2 (a) and Fig. 2 (b));

and 3) the test sample undergoes the serious deformation (the

bottom two rows of Fig. 2 (a) and Fig. 2 (b)). From Fig. 2, we

can see that all the three methods achieve good reconstruc-

tion performance in cases 1) and 2). However, our method

outperforms the other two methods in case 3) with serious

corruption and occlusion.

In Fig. 3, we show the reconstruction performance of three

methods for CASIA dataset (Fig. 3(a)) and OU-ISIR dataset

(Fig. 3(b) and Fig. 3(c)). Two cases are considered. One is the

1http://www.am.sanken.osaka-u.ac.jp/GaitDB/index.html
2http://www.cbsr.ia.ac.cn/english/Gait%20Databases.asp

Fig. 2. Silhouette reconstruction results by three different methods:

(a) OU-ISIR dataset; (b) CASIA dataset. Each row corresponds to a

test case.

Table 1. Quantitative comparison among the three methods in the

case of serious corruption

Method
OU (SPSS) OU(SPDS) CASIA(SPDS)

ARS SD ARS SD ARS SD

Ours 0.90 0.02 0.80 0.05 0.74 0.05
SFSR 0.85 0.08 0.77 0.08 0.65 0.12

MLSR 0.80 0.09 0.72 0.07 0.62 0.08

same person with the same speed (SPSS) and the other one is

same person with different speed (SPDS). For SPSS case, the

first half part of the sequence is used for training and the rest is

for testing. For SPDS case, the 4km/h speed sequence is used

as training data and the 7km/h speed sequence is for testing.

For all the testing sequences, 50% frames are selected ran-

domly and corrupted seriously. From Fig. 3, it’s clear that our

method performs better than the other two methods on both

of the two datasets. We also report the average reconstruction

score (ARS) and the standard deviation (SD) among the three

methods in the case of serious corruption in Table 1. Note

that our method achieves the highest ARS and the lowest SD.

Furthermore, we evaluate the effect of the different cor-

ruption rates as shown in Fig. 4. Corruption rate is the pro-

portion of noisy images to the whole testing images. When

the test sequence is normal or mildly corrupted, MLSR has a

good performance. However, as the corruption rate increas-

es, the average reconstruction score of our method decreas-

es more slowly, which indicates the better stability of our
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Fig. 3. Illustration of reconstruction performance comparison a-

mong three methods. (a) shows the frame-by-frame reconstruction

scores for CASIA dataset; (b) and (c) display the distribution of the

reconstruction scores for OU-ISIR dataset. The vertical axes of (b)

and (c) are the reconstruction score intervals and the horizontal axes

correspond to the number of frames fallen into each interval.

method.

In addition, MLSR is susceptible to serious corruption.

Fig. 5 gives an intuitive illustration. If the test sample is se-

riously corrupted, the nearest neighbor obtained by MLSR is

extremely unreliable or even wrong, as shown in Fig. 5 (a)

and Fig. 5 (b).

4. CONCLUSION

In this paper, we have presented a temporal constraint-based

human silhouette reconstruction method. This method aim-

s to find the reliable templates by considering the temporal

constraint among consecutive frames and use them to robust-

ly reconstruct a test silhouette. In order to obtain reliable tem-

plates, a NNLS-based criterion is proposed to adaptively de-

termine the status of the current test sample (normal or abnor-

mal). Based on the abnormality detection, the “shortest paths”

searching scheme is proposed to obtain the reliable templates.

We compare our method with two competing methods on two

challenging datasets. Both qualitative and quantitative exper-

imental results demonstrate the effectiveness and robustness

of our method.
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