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ABSTRACT 

Distributed camera networks have been deployed in the modern 
surveillance systems. The camera link model, including transition 
time distribution and brightness transfer function that represent the 
space-time relationship and color model between two cameras, is a 
critical element for tracking objects across the cameras. In this 
paper, we formulate the estimation of the camera link model as an 
optimization problem, where the deterministic annealing and the 
barrier method are applied to effectively extract the model 
parameters. Through the unsupervised scheme, our method utilizes 
the time stamps and color features together to establish the camera 
link model in presence of the outliers. Several simulations and 
comparative studies show the effectiveness of our approach. 

Index Terms— distributed camera networks, camera link 
model, deterministic annealing, barrier method, multiple camera 
tracking

1. INTRODUCTION 

Due to the limited field of view (FOV) of a single camera, a 
surveillance system nowadays consists of several cameras covering 
a range of area. However, tracking objects across the cameras 
suffers from the non-overlapping FOVs between cameras. Before 
performing the multiple cameras tracking [1][2][12], how to obtain 
the reliable camera link model from the training videos becomes a 
critical issue. This model includes the transition time distribution 
which describes the traveling time between two cameras [4], and 
the brightness transfer function (BTF) that stands for the mapping 
between color models in different cameras [3]. If we know the 
correct correspondence between the objects in two cameras given 
the training videos, a set of traveling time between the match pairs 
can be used to estimate the transition time distribution by applying 
kernel density estimation [2]. Similarly, the BTF can be extracted, 
too. However, as the scale of the camera network is getting larger, 
unsupervised learning is more feasible than supervised ones. 
Moreover, in practice, since the connections between cameras may 
be arbitrary, the outliers exist; that is, one departing from a camera 
does not necessarily enter the other camera. Here we formulate the 
estimation as an optimization problem and use an unsupervised 
learning scheme by applying the deterministic annealing and the 
barrier method to build the model in presence of the outliers. 

Makris et al. [4] proposed an estimation method to build the 
transition time distribution based on the cross-correlation between 
the exit and entry time stamps of the objects. Their assumption on 
the single mode distribution is inadequate since it cannot represent 
most cases in the real world. In [5], an entropy-based method was 
presented to find the distribution. Markov Chain Monte Carlo 

(MCMC) was utilized to find the optimal correspondence.  
Although they discussed the outliers and tried to model the color 
deviation between cameras, the performance reliability remained 
unclear. Moreover, it has been shown in [7] that their minimum-
entropy assumption may not hold for practical applications. In 
Gilbert’s work [6], they used color information in building the 
transition time distribution. However, similar to [4], they 
considered all the correspondence within a given time window 
which generated the mixture of true and false correspondences; 
hence, large amount of training data is required for building a 
reliable model. Also, they only dealt with the transition time 
distribution during the estimation process, and the BTF was 
handled separately. Huang et al. [7] introduced a method based on 
the Gibbs sampling, where they used the hard decision to 
determine the correspondence during the whole estimation process, 
which may be easily trapped in the local optimum. Furthermore, 
they did not take into account the BTF and the outlier issue.  

Our aim in this paper is to present an unsupervised method 
that effectively estimates the camera link model given the training 
data containing the outliers. More specifically, (1) We formulate 
the camera link model estimation as an optimization problem and 
apply the deterministic annealing combined with the barrier 
method to find the optimal solution. (2) The time stamp and color 
information are both incorporated in the objective function that 
enables the simultaneous extraction of the transition time 
distribution and the BTF. (3) A reliable model is built based on this 
unsupervised learning scheme even in presence of the outliers. 

This paper is organized as follows: Section 2 provides the 
optimization problem formulation of the camera link model. The 
estimation process is described in Section 3. Section 4 shows the 
experimental results, followed by the conclusion in Section 5. 
  

2. PROBLEM FORMULATION 

To construct the camera link model between the cameras, the 
correspondence between two observation sets from a pair of 
cameras need to be identified first given the training data. Inspired 
by the concept of feature points matching between two images [8], 
our modeling can be formulated as an optimization problem. 

Assume we have two sets of observations, � and � , which 
represent the exit and entry observations in two cameras. 

� � ��� � �
�
�
�, � � ��� � �

�
�
�

where �
�
	and �

�
 are d-dimension feature vectors of an exit or entry 

observation, and N1 and N2 are the numbers of the observations in 
each set. Our goal is to find the (N1+1)�(N2+1) permutation matrix 

	. Each entry 

��

 in 	 will be set to 1 if �
�
	corresponds to	�

�
; 

otherwise, it is set to 0. The (N1+1)th row and (N2+1)th column
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represent the outliers entries. Note 

�
�
����

�
��

 has no physical 
meaning, so all the following discussion will exclude it 
automatically. Hence, the problem can be written as a constrained 
minimization integer programming problem:  
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where � is the objective function to be minimized. The constraint 
equations (2)~(4) enforce the one-to-one correspondence (except 
the outliers). The problem can be relaxed by substituting constraint 
(2) with 

1,10 21 +≤+≤∀≥ NjNiPij                      (5) 

In this way, the variable is continuous and can be easier to solve 
[8]. Moreover, the relaxation will reduce the chance of getting 
trapped in the local minimum. It can be proved that as the iteration 
proceeds, the solution will converge at the one to the original 
integer problem [9]. We then apply the deterministic annealing 
combined with the barrier method to iteratively solve the problem. 

3. CAMERA LINK MODEL ESTIMATION 

The objective function is divided into several parts as the following: 

3.1. Transition Time Constraint  
In order to build the transition time distribution �

�
 by using kernel 

density estimation, a set of time values 
 need to be collected first. 

Given the current estimation of 	 , we can extract the transition 

time values 
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� from 	, � and �: 
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where 

��
	can be used to indicate how likely the matching is 

between the i-th exit and the j-th entry observations; �
�

	 and �
�

	 are 
the entries representing the time stamps in the observation vectors 

	�
�

and �
�
. The transition time is always positive if two cameras 

have no overlapping area, i.e., entry time of a person is greater than 
the exit time of the correct correspondence. Also, if the i-th exit 
observation is an outlier, 


���
�
��

should be one resulting in 

�
�
� �. Hence, we express this constraint (�

�
� �) in terms of a 

barrier function [11]: 
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where �  is a factor that effectively control the degree of the 
constraint satisfaction. 

3.2. Transition Time Distribution 
Given a set of time values 
 � ��� � �

�
�
�, the estimation 

of the transition time distribution �
�

 is built based on the kernel 
density estimation: 
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where �
�



	is the predefined variance of the Gaussian kernel. The 

confidence of the estimation is based on a maximum likelihood 
approach, i.e., for each possible correspondence, we compute the 
log likelihood value given the model. Thus, the total cost can be 
written as: 
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3.3. Brightness Transfer Function (BTF) 

Same object may appear differently in two disjoint cameras due to 
the illumination change and different camera responses, and the 
color deviation can be modeled as the brightness transfer function 
(BTF) [3]. The BTF is applied to compensate the color difference 
between two cameras before we calculate the distance between the 
histograms of two observations from two cameras. Thus, the total 
cost function for the BTF is:
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where � is the distance function between two histograms; 	�
�

� and 

	�
�

� are the color histograms of the observation vectors, 	�
�

and �
�
; 

and �
���

 is the estimation of BTF. If two observations are 
actually a match, and the BTF is estimated correctly, the distance 
value will be small. 

3.4. Maximum Entropy Principle 
In deterministic annealing, a widely used scheme to solve the 
optimization problems, the procedure starts with emphasizing high 

“uncertainty”, measured as the entropy, of the entries in 	; that is, 
to maximize the entropy. As the iteration goes, the importance of 
the maximum entropy principle is decreasing by controlling a 
certain parameter [10]. Thus, the cost function is written as the 
negative of the entropy:                             
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Note that 
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�
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	is not considered here. The factor � starts 

with a low value that makes the importance higher in the beginning, 
and it then gradually increases to lower the emphasis. The function 
(11) can also be seen as the barrier function for the constraint (5); 

hence, we can set � value the same as � in Section 3.1.  

3.5. Objective Function 
By combining the above cost functions, our final objective 
function to be minimized is shown in the following:  
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Constraints (3) and (4) can be satisfied by performing the 
alternative row-column normalization based on the Sinkhorn’s 
theorem [9]. By employing the deterministic annealing method and 

the barrier method [9][10][11], the 	 matrix is updated in each 
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iteration with the decreasing of the objective function (12)(Fig. 1). 
In the early stage, due to the problem relaxation (see (5)), the 


��

value is continuous in the range between 0 and 1. Instead of 
making hard decision, this soft assignment prevents it from being 

trapped in the local minimum. The � value is also increased by a 

fix rate � until the final value �



 is reached. It can be proved that 

as the iteration increases, the 	 matrix eventually converges to a 

binary-valued matrix [9]. Since 	 determines the current 
estimation of the correspondence, we use it to update the camera 
link model.  

3.6. Camera Link Model Update 
For a current 	, the set of transition time 
 � ��� � �

�
�
� is 

extracted via (6). After that, the �
�

 is updated by applying kernel 

density estimation based on (8). To update the �
���

, we should 
extract the corresponding histograms between two cameras. Given 
a current 	, each 


��
 indicates how likely the matching is between 

the i-th exit and the j-th entry observations. Thus, we can calculate 

the weighted sum among the histograms in set � and � separately, 

where the weights are set in proportional to 
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In this way, the histograms of the outliers will not be included in 

the cumulated histograms �
�

 and �
�

. The �
���

 can thus be 
estimated and updated [3].  

4. EXPERIMENTAL RESULTS 

We have tested our proposed method in several scenarios. The 
observation sets are manually generated from the videos and the 
ground truth correspondence can also be identified. We follow the 
parameters setting in [9] by assigning �

�
� �������, � � �����, 

and �
�
� ���. �

�
 in (8) is set as 0.5, and some other initial 

values are set as the following: 
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where e is set as 0.01. The initial �
�

 is set as in Section 3.6 based 

on the initial 	, and the identity function is used as initial �
���

. 

The Euclidean distance is employed for the distance function � in 
Section 3.3.  

4.1. Set 1: Self-Recorded Data
Several cameras are mounted outside the department building with 
non-overlapping FOVs. Here we only show the simulations from 
one pair of cameras. There are total 80 people in the videos and 
contain 23% unmatched outliers. Fig. 2 shows the estimation 
results of the normalized transition time distribution. The results 
from other approaches [4,5,6,7] are also shown in different curves. 
Based on the results, it can be seen that our method produces the 
best match to the ground truth among all competing ones. Since 
other approaches did not solve the BTF explicitly, we only 
compare our BTF results with the ground truth in Fig. 3, where we 
can see that they coincide to each other well. 

4.2. Set 2: i-LIDS Dataset
We further use the video clips in a multiple camera tracking 
scenario from the international benchmark, i-LIDS dataset [13]. 
Five cameras cover the airport area, and the estimated transition 
time distribution from two views of them are shown in Fig. 4. We 
select a video clip which contains 84 people with 30% unmatched 
outliers. The ground truth has multiple modes since people tend to 
travel with varying speeds due to different amounts of the carried 
luggage. Fig. 4 demonstrates that our method outperforms all the 
other approaches. The BTF estimation also achieves a good 
approximation of the ground truth (see Fig. 3).  

Figure 3. Brightness transfer function. The broken lines and the 
solid lines denote the ground truth and the results, respectively. 
Only one channel is shown here. 

Figure 2. Transition time distribution for self-recorded video. 

Figure 1. Pseudo code of the optimization algorithm.  

1.    Initialize 	� �
�
� �

���
� � � �

�
.  

2.    While (� � �
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3.          
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4.          Alternatively perform row-column normalization. 
5.          Update �

�
 and �

���
based on Section 3.6 

6.          Update � � � � �

7.    End 
8.    Update final �

�
 and �

���
 based on Section 3.6 
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Table I shows the quantitative results of the above two dataset. 
The error is computed via the Euclidean distance between the 
results and the ground truth. Since the distribution of set 2 is more 
complicated than set 1, it has higher error value. 

4.3. Error vs. The Outlier Percentage
Fig. 5 shows the errors of the estimation of the transition time 
distribution under different portions of the outliers based on set 1. 
As expected, the error increases as the percentage of the outliers in 
the training data raises. For simplicity, since the performance from 
Huang’s method [7] is more reliable than the other compared 
methods, we only include it for comparison. Our method achieves 
better accuracy. For example, one can see that when the error value 
is around 0.1, our approach can tolerate 40% outliers instead of 
25% by using the method in [7]. 

5. CONCLUSION 

In this paper, the camera link model estimation is formulated as an 
optimization problem and the deterministic annealing combined 
with the barrier method is employed to effectively find the optimal 
solution. The time and color information are both considered in the 
objective function to extract the transition time distribution and 
BTF simultaneously. The promising experimental results and 
comparative studies demonstrate that our approach is able to 
generate dependable model even in presence of the outliers. In the 
future, we will utilize more features and try to include other 
transfer functions in the camera link model. Finally, this model 
will be applied to a multiple cameras tracking system. 
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Figure 5. The error of the estimation of the transition time 
distribution against the outlier percentage. Blue: proposed. 
Red: Huang’s [7] 

Figure 4. Transition time distribution for i-LIDS dataset.  

TABLE I 
AVERAGE ERROR

Error 
Method

Proposed 
Makris

[4] 
Tieu 
[5] 

Gilbert 
[6] 

Huang 
[7] 

Set 1 0.011 0.24 0.2 0.38 0.066 

Set 2 0.17 1.49 1.5 1.28 0.46 
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