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ABSTRACT

This paper proposes a new approach to motion vector field smooth-
ing for block-based motion-compensated frame interpolation (MCFI).
Based on the assumption that an observed motion vector field,
which is the result of a block-based motion estimation (BME), is a
degraded version of the true motion vector field, we calculate the
maximum a posteriori (MAP) estimate of the true motion vector
field from the observed. The degradation and the true motion vector
field are modeled as additive Gaussian noise and a Markov random
field, respectively. Iterative conditional modes (ICM) method is
used for calculating the MAP estimate. The experimental results
show that the proposed algorithm not only smoothes MVFs but also
preserves motion boundaries better than the existing methods.

Index Terms— Motion vector field smoothing, MCFI, MAP-
MRF

1. INTRODUCTION

Motion-compensated frame interpolation (MCFI) has been used
to enhance temporal resolution of a video by increasing the frame
rate. It usually consists of two major steps: motion estimation (ME)
and frame interpolation (FI). In the ME step, the motion vectors of
non-overlapping blocks or pixels of the current frame are estimated
based on the surrounding frames. Block-matching approaches have
widely been used for ME because of its simplicity. In the FI step,
one or more frames are interpolated using the surrounding frames
and the estimated motion vectors.
MCFI that uses block-based motion estimation (BME) suffers from

annoying blocky artifacts and ghost effects. This is because BME
usually estimates motion vectors by only minimizing the block-
matching errors between adjacent frames. One of the solutions
to this problem is motion vector field smoothing, which many re-
searches have adopted and improved.

One way to produce a smooth motion vector field (MVF) is to
adjust each motion vector in relation to its neighboring vectors. A
widely used method is vector median filtering (VMF) [1]. Alparone
et al. proposed an adaptively weighted vector median filter where
the matching errors are used to calculate the weights [2]. Huang
et al. smoothed the MVF according to a measure of reliability that
is computed for each vector from both the matching error and the
correlations between neighboring motion vectors [4][5]. Sohn et al.
proposed a regularization algorithm for motion vector field smooth-
ing [3]. The method iteratively smoothes the MVF based on the

matching error and the variance of the MVF. In this paper, we pro-
pose a novel statistical approach to motion vector field smoothing
for block-based motion-compensated frame interpolation.

2. PROBLEM FORMULATION

Given two adjacent frames fn−1 and fn of a video, let dn =
[dn(1), ...,dn(N)] denotes the 2-D motion vector field (MVF) ob-
tained by a block-based motion estimation (BME), where dn(i) and
N respectively denote the 2-D motion vector of the i-th block of
the frame fn pointing to a matching block in fn−1 and the number
of non-overlapping blocks in a frame. Let’s assume that dn which
we call the observed motion vector field, or simply observation is a
degraded version of the true motion with an additive noise such that

dn(i) = un(i) + en(i), i = 1, 2, ..., N, (1)

where un(i) is the true 2-D motion vector of the i-th block of fn and
en(i) denotes a random noise. Under this assumption, we want to es-
timate the true MVF un = [un(1), ...,un(N)] from the observation
dn by maximizing the a posteriori probability

P (un | dn, fn−1, fn) =

P (dn | un, fn−1, fn)P (un | fn−1, fn)P (fn−1, fn)

P (dn, fn−1, fn)
. (2)

Therefore, the maximum a posteriori (MAP) estimate ûn of un can
be obtained by

ûn = argmax
un

[P (dn | un, fn−1, fn)

P (un | fn−1, fn)], (3)

where P (dn, fn−1, fn) and P (fn−1, fn) are ignored because they
are constants with respect to the unknown.

2.1. Observation Likelihood

In the literature, the difference between the true motion vector and
the motion vector estimated by BME is usually modeled as having
generalized Gaussian distribution [6]. Therefore, we assume that
the 2-D random noise vectors en(i) in (1) are independent Gaussian
with N (0, σ2

i I), where 0 and I are the 2×1 zero vector and the 2×2
identity matrix, respectively, and σ2

i is the noise variance. With the

989978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



assumption that p(dn(i) | un, fn−1, fn) = p(dn(i) | un(i)) and
our observation model (1), we can express the likelihood p(dn(i) |
un, fn−1, fn) as

p(dn(i) | un, fn−1, fn)

=
1

2πσ2
i

exp
(
− ‖dn(i)− un(i)‖2

2σ2
i

)
. (4)

Finally, conditional independence assumption leads us to the obser-
vation likelihood P (dn | un, fn−1, fn) in the following form:

P (dn | un, fn−1, fn) = ΠN
i=1p(dn(i) | un(i))

= exp
(
−N ln 2π −

N∑
i=1

lnσ2
i −

N∑
i=1

‖dn(i)− un(i)‖2
2σ2

i

)
. (5)

2.2. A priori distribution of the true motion vector field

Let us assume that un is a realization of a 2-D Markov random vec-
tor field Un so that P (un | fn−1, fn) follows the Gibbs distribution

P (un | fn−1, fn) =
1

Z
exp

(
− γU(un)

)
, (6)

where Z =
∑

un∈D
exp

(
− γU(un)

)
, U is a set of all possible

configurations of Un, U(·) is the energy function for the priori dis-
tribution, and γ is a constant. The new energy function U(un) is
defined as

U(un) =

N∑
i=1

∑
j∈Ni

μij‖un(i)− un(j)‖2, (7)

where Ni denotes the index set of the blocks neighboring on the i-th
block and Figure 1-(a) shows the neighborhood system. The factor
μij is the weight for the neighboring motion vector un(j) of the i-th
block. The proposed energy function is designed to reflect the fact
that the MVFs of a common video are smooth except at the motion
boundaries, where the weight μij plays a crucial role.

This is how we compute μij . Let εi(v) be the sum of absolute
differences (SAD), as the block-matching error corresponding to the
motion vector v, such that, with fn(m) denoting the pixel value at
the position m = [mx my] in the frame fn,

εi(v) =
∑

m∈Bi

|fn(m)− fn−1(m+ v)|, (8)

where Bi denotes the set of all the pixel indices in the i-th block.
Also, let us define the set N x

i = {j|j ∈ Ni, xi(j) = 1} of block
indices, which we call the suitable set, where xi(j) is given by

xi(j) =

{
1, εi(un(j)) ≤ λ
0, εi(un(j)) > λ

(9)

with a threshold λ. We choose λ = min{λ1, λ2} where λ1 =
1
2
(max(S)+min(S)), λ2 = median(S), and S = {εi(un(k)) | k ∈

Ni}. Then the proposed weight factor μij is defined as μij =
(1− ζ)αij + ζβij where

αij =
εi(un(j))

−1 · xi(j)∑
k∈Nx

i
εi(un(k))−1

,

βij =
[
∑

l∈Nx
i ,l �=j ‖un(j)− un(l)‖2]−1 · xi(j)∑

j∈Nx
i
[
∑

l∈Nx
i ,l �=j ‖un(j)− un(l)‖2]−1

,

(a) (b)

Fig. 1. (a) Second-order neighborhood system. ◦ and × indicate a
center block and neighboring blocks, respectively. (b) An example
of a motion boundary. The blocks of the same color correspond to
the same motion.
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Fig. 2. The total energy E(ûk
n) versus iteration number k.

and ζ is a constant with 0 ≤ ζ ≤ 1. Note that 0 ≤ μij ≤ 1 and∑
j∈Ni

μij = 1 because
∑

j∈Ni
αij =

∑
j∈Ni

βij = 1.
The proposed weight factor is devised to show ‘how suitable and

reliable a neighboring motion vector is for the current block’. We
can use Figure 1-(b) to explain how it works. In the figure, the blocks
with the same color correspond to the same motion. The three lower
right neighboring vectors are in this case considered suitable can-
didates for the true motion of the center block, and these neighbors
should be given higher weights in calculating U(un). Since the true
motion vector must have the smallest possible SAD, we use SAD to
define the suitability measure αij . On the other hand, SAD might
be misleading when a very similar pattern occurs in a wrong place.
This is counteracted by the reliability measure βij , which gives a
higher weight to the most representative vector in the suitable set by
incorporating the distances between motion vectors in the set.

3. ENERGY MINIMIZATION

The maximization of the a posteriori probability is equivalent to the
minimization of the total energy

E(un) =

N∑
i=1

V (un(i)) =

N∑
i=1

[‖dn(i)− un(i)‖2
2σ2

i

+ lnσ2
i

+γ
∑
j∈Ni

μij‖un(i)− un(j)‖2
]

(10)
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Fig. 3. Refined motion vector fields. (a) The observed motion vector
field (b) VMF [1] (c) adaptive VMF [2] (d) vector regularization
with 6 iterations [3] (e) Proposed with 3 iterations (f) Proposed with
6 iterations.

because the a posteriori probability can be rewritten as

P (un | dn, fn−1, fn) ∝ exp
(
−

N∑
i=1

V (un(i))
)
. (11)

Because V (un(i)) is a convex function of un(i), we can minimize
E(un) by minimizing each of V (un(i)) for i = 1, ..., N . Let ûn(i)
denote the vector that minimizes V (un(i)). Then ûn(i) can be

found by solving
∂V (un(i))
∂un(i)

= 0, which gives rise to

ûn(i) =
dn(i) + 2γσ2

i

∑
j∈Ni

μijun(j)

1 + 2γσ2
i

. (12)

Here, we propose adapting (12) into the following iterative proce-
dure because, {un(j) | j ∈ Ni} and σ2

i being unknown, it does not
produce a direct solution. Finally, we note that μij is regarded as a

constant while solving
∂V (un(i))
∂un(i)

= 0 since it is not a function of

un(i).

Step 1) Calculate an initial estimate û0
n of un from

û0
n(i) =

dn(i) + 2γσ2
i(0)

∑
j∈Ni

μijdn(j)

1 + 2γσ2
i(0)

, (13)

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Interpolated frames using refined motion vector fields. (a)
The observed motion vector field (b) VMF [1] (PSNR=29.27dB)
(c) adaptive VMF [2] (PSNR=29.35dB) (d) vector regularization
with 6 iterations [3] (PSNR=28.81dB) (e) Proposed with 3 iterations
(PSNR=29.37dB) (f) Proposed with 6 iterations (PSNR=29.62dB).

where σ2
i(0) is an approximate initial estimate of the noise variance

derived from the set {dn(l) | l ∈ {i ∪N x
i }}.

Step 2) Calculate the k-th estimate ûk
n from ûk−1

n by

ûk
n(i) =

dn(i) + 2γσ2
i(k−1)

∑
j∈Ni

μijû
k−1
n (j)

1 + 2γσ2
i(k−1)

, (14)

where σi(k−1) = ‖dn(i)− ûk−1
n (i)‖.

Step 3) Iterate Step 2 while increasing k until |E(ûk
n)−E(ûk−1

n )| ≤
ε is satisfied for a pre-defined threshold ε.

We note that the proposed iterative algorithm falls in the cate-
gory of iterative conditional modes (ICM) method [8]. Therefore,
E(un) being a convex function of un, the algorithm should cer-
tainly converge to a global optimum if σi, i = 1, ..., N , are known.

4. EXPERIMENTAL RESULTS

In this section, we describe our experiments and results intended
to demonstrate the performance of the proposed algorithm. Our
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Table 1. Averaged PSNR(dB) Performance

Sequences VMF [1] WVMF [2] VR (iter=6) [3] Proposed (iter=3) Proposed (iter=6)

Foreman 27.56 27.60 27.18 27.78 27.81
Coastguard 28.99 29.57 28.71 29.86 29.90
Silent 28.43 28.40 28.20 28.59 28.66
Mobile 20.97 20.81 20.09 20.97 21.04
Mother 28.30 28.24 25.73 28.36 28.36

method is compared with the vector median filter (VMF) [1], the
adaptive vector median filter (AVMF) [2], and the vector regular-
ization method (VR) [3]. For the experiments, five commonly used
test videos, Foreman, Coastguard, Silent, Mobile, and Mother are
used. Each video is composed of 300 frames of size 352×288 pixels
at 24 fps. A full-search block matching algorithm is performed to
obtain the observed MVFs between two successive odd frames with
the block size 8×8 pixels over the search range +/-24 pixels both in
horizontal and vertical directions. The sum of absolute difference
(SAD) is used for the matching criterion. We set γ = 5 and ζ = 0.5
for the experiments.

We first tested the convergence of the proposed algorithm. The
backward MVF from 19-th frame to 17-th frame of the five test
videos are used. Figure 2 shows the energy E(ûk

n) versus the itera-
tion number k. We can see that the energy E(ûk

n) quickly converges
to a minimum value in only 3∼4 iterations.

The subjective quality of the interpolated frames constructed by
different methods are presented in Figure 3. Here we show, overlaid,
the backward MVFs pointing from 121-th frame to 119-th frame of
the video Silent. A woman in the video is moving only her right arm
so that large motion vectors are observed on her right arm and its the
shadow on her shoulder. The figure shows that the proposed method
not only well smoothes the MVF but also preserves the motion
boundaries (see the motion vectors of the finger, the arm, and the
shadow) through iterative smoothing of the field. This is because the
proposed algorithm exploits only the neighborhood motion vectors
that are “suitable” for the current block to refine the motion vector.
In contrast, the methods in [1] and [3] spoil the motion boundaries.
Note also that the method in [2], too, well preserves the motion
boundaries, which is because Alparone et al. use as well the concept
of suitability in assigning the weights to the vector median filter.

Figure 4 shows the 120-th frame interpolated using the refined
MVFs of each algorithm. In generating the interpolated frame, we
adopted the method of [7], which uses both forward and backward
MVFs. We can see in the figure that the proposed algorithm shows
the best performance. Especially, clearer edges can be seen around
the arm and its shadow as compared to the results of the other algo-
rithms.

Finally, table 1 shows the averaged PSNR for each of the five test
videos. The PSNR is calculated from the error between the interpo-
lated and original even numbered frame and then averaged over the
whole video. We find that the proposed algorithm clearly shows the
over-all best performance. The proposed method particulary shows
good performance on the sequences with many motion boundaries
such as Foreman and Coastguard. On the sequences with only few
motion boundaries such as Mother and Silent, however, the improve-
ment is not as great.

5. CONCLUSION

A new algorithm for motion vector field smoothing is proposed in
this paper. Under the MAP-MRF framework, the true motion vector
field (MVF) is estimated based on the assumption that the observed
MVF, as a result of a block-based ME, is a degraded version of the
true MVF. The experimental results show that the proposed algo-
rithm not only smoothes MVFs but also preserves motion boundaries
better than the existing methods.
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