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ABSTRACT
Multiple player tracking is one of the main building blocks
needed in a sports video analysis system. In an uncalibrat-
ed camera setting, robust mutli-object tracking can be very
difficult due to a number of reasons including the presence
of noise, occlusion, fast camera motion, low-resolution image
capture, varying viewpoints and illumination changes. To ad-
dress the problem of multi-object tracking in sports videos,
we go beyond the video frame domain and make use of in-
formation in a homography transform domain that is denoted
the homography field domain. We propose a novel particle fil-
ter based tracking algorithm that uses both object appearance
information (e.g. color and shape) in the image domain and
cross-domain contextual information in the field domain to
improve object tracking. In the field domain, the effect of fast
camera motion is significantly alleviated since the underlying
homography transform from each frame to the field domain
can be accurately estimated. We use contextual trajectory in-
formation (intra-trajectory and inter-trajectory context) to fur-
ther improve the prediction of object states within an particle
filter framework. Here, intra-trajectory contextual informa-
tion is based on history tracking results in the field domain,
while inter-trajectory contextual information is extracted from
a compiled trajectory dataset based on tracks computed from
videos depicting the same sport. Experimental results on real
world sports data show that our system is able to effectively
and robustly track a variable number of targets regardless of
background clutter, camera motion and frequent mutual oc-
clusion between targets.

Index Terms— Tracking, Particle Filter, Cross-Domain,
Contextual Information

1. INTRODUCTION

Tracking multiple targets has been of broad interest in the
computer vision community for decades. A visual-based
multi-target tracking system should be able to track a variable
number of objects in a dynamic scene and maintain the cor-
rect identities of the targets regardless of occlusion and any
other visual perturbations (e.g. camera motion, illumination
changes, and object resolution). Extensive work has been
done over the years [1, 2], as it is a very complicated and
challenging problem. In this paper, we address the problem of

Fig. 1. An exemplar frame from an American football video
clip. The red bounding box (15×11 pixels) is an initialization
for object tracking. Note that players on the same team have
very similar appearances and are usually of low-resolution.

robust multi-target tracking within sports videos (e.g. Amer-
ican football) by tracking players using hybrid information
from both the image and field domains.

Human activity analysis has been established in the field-
s of security surveillance and military applications, but the
sports world has been extremely under-serviced. Multiple
player tracking is one of the main building blocks needed
in an effective sports video analysis system. Knowing the
location of each player on the field at each point of the game
is crucial for sports experts (e.g. coaches, trainers, and sports
analysts) to better understand complex player formations and
trajectory patterns, which ultimately depict the effectiveness
of their teams’ strategies as well as their opponents’. Be-
ing able to effectively track multiple players at one time can
enable the development of reliable activity recognition and
higher-level processing modules for sports video analysis.
Such a tracking building block will have a positive impact
on how sports experts analyze game footage, how content
providers identify/display particular sports events and high-
lights accompanied with relevant advertisements, and how
end users browse and query large collections of sports video.

Tracking players in the image domain is a difficult and
challenging problem for several reasons: (1) Tracking players
in sports is hard. Players on the same team have similar ap-
pearance information as shown in Fig. 1. This leads to the loss
of a player’s track when he/she is moving near other players
from the same team. (2) For sports video, it is always record-
ed in far-field view. Players are blurry and are often captured
in low-resolution as exemplified in Fig. 1 (the red bounding
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(a) Image Domain (b) Field Domain

(c) Image Domain (d) Field Domain

Fig. 2. 2(a) and 2(c) are two exemplar frames from two video
clips of American football. 2(b) and 2(d) are tracking results
of multiple players. From the results, we can see that trajec-
tories in different videos are similar due to the inherent rules
of the game. Clearly, contextual information based on prior
tracking knowledge can be useful to improve object tracking.
Moreover, a player’s motion pattern in the homography field
domain can be much more informative than motion patterns
in the image domain especially due to camera motion. This is
a primary reason why coaches and sports experts prefer field
domain trajectories over image domain ones.

box is 15× 11 pixels), thus precluding robust tracking using a
player’s individual local information. (3) Tracking players in
the presence of camera motion (i.e. pan, tilt, or zoom) is sig-
nificantly more difficult than when the camera is static, since
background subtraction becomes non-trivial. Coupled with
motion blur, frequent occlusions and exit/re-entrance of play-
ers, tracking becomes quite challenging. (4) Motion features
extracted from the image domain may not provide enough dis-
criminative information to reliably track multiple players on
the field. For instance, in the image domain and due to per-
spective transformation, apparent local player motion is high-
ly impacted by motion parallax due to camera motion.

The aforementioned reasons render it difficult to realize
a robust multi-player tracking system that functions solely in
the image domain of sports videos. Consider state-of-the-art
object tracking methods such as tracking-by-detection meth-
ods [1, 3, 4, 5]. The player has low-resolution, as shown in
Fig. 1, and there is limited appearance information to train
a reliable object detector, which renders these methods inef-
fective. Therefore, any tracking method that is only based
on image domain information will tend not to be robust and
fail due to limited discriminative information. Fortunately, we
can resort to the information from the field domain to allevi-
ate this problem. Our decision to use cross-domain contex-
tual information based approach is motivated by several fac-
tors. First, in the field domain, we can eliminate fast camera
motion effects (e.g. parallax) through the homographical cor-
respondence between points in the field and image domains.
Second, the trajectory of each player enjoys many character-
istics that allow it to be more predictable in the field domain
as shown in Fig. 2. This can help predict a player’s next po-
sition, leading to more robust tracking. Third, due to game

rules, players in different video clips have similar trajectories
as shown in Fig. 2. This demonstrates that using prior player
trajectories (e.g. from a trajectory dataset) can help improve
player tracking. Therefore, we attempt to implement a robust
multi-object tracking system using cross-domain contextual
information from both the field and image domains. In our al-
gorithm, we employ the particle filter framework [6] to guide
the tracking process. The cross-domain contextual informa-
tion is integrated into the framework and acts as a guide for
particle propagation and proposal.

2. OUR PROPOSED METHOD
2.1. Particle Filter
The particle filter [7] is a Bayesian sequential importance sam-
pling technique for estimating the posterior distribution of s-
tate variables characterizing a dynamic system. It provides a
convenient framework for estimating and propagating the pos-
terior probability density function of state variables regardless
of the underlying distribution, consisting of essentially two
steps: prediction and update. Let xt denote the state vari-
able describing the parameters (e.g. appearance or motion fea-
tures) of an object at time t. The predicting distribution of xt

given all available observations z1:t−1 = {z1, z2, · · · , zt−1}
up to time t− 1, denoted by p(xt|z1:t−1), is recursively com-
puted in (1).

p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 (1)

At time t, the observation zt is available and the state vec-
tor is updated using Bayes rule, as in (2), where p(zt|xt) de-
notes the observation likelihood.

p(xt|z1:t) = p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)
(2)

In the particle filter framework, the posterior p(xt|z1:t) is

approximated by a finite set of N samples
{
xi
t

}N

i=1
(called

particles) with importance weights wi. The candidate samples
xi
t are drawn from an importance distribution q(xt|x1:t−1, z1:t)

and the weights of the samples are updated as Eq.(3). To avoid
degeneracy, particles are resampled to generate a set of equal-
ly weighted particles by their importance weights.

wi
t = wi

t−1

p(zt|xi
t)p(x

i
t|xi

t−1)

q(xt|x1:t−1, z1:t)
(3)

Using the particle filter framework, we model the obser-
vation likelihood and the proposal distribution as follows. For
the observation likelihood p(zt|xt), we follow [1] and adopt a
multi-color observation model based on Hue-Saturation-Value
(HSV) color histograms and a gradient-based shape model us-
ing Histograms of Oriented Gradients (HOG). We apply the
Bhattacharyya similarity coefficient to define the distance be-
tween HSV and HOG histograms respectively. Moreover, we
also divide up the tracked regions into two sub-regions (2×1)
in order to describe the spatial layout of color and shape fea-
tures for a single player. We model the proposal distribution
q(xt|x1:t−1, z1:t) as shown in (4), by fusing information from
different sources described in the subsections 2.2 and 2.3.

q(xt|x1:t−1, z1:t) = α1p(xt|xt−1) + α2p(xt|xt−L:t−1)
+ α3p(xt|x1:t−1, T1:K). (4)
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To decide the values of α1, α2, and α3, we can use a cross-
validation set. For simplicity, α1, α2, and α3 are equal and set
to be 1/3 by experience in our experiments.

2.2. Intra-trajectory Contextual Information

For a tracked object from frame 1 to t − 1, we obtain t − 1
points: {p̂1, p̂2, · · · , p̂t−1}, which correspond to a short tra-
jectory denoted as T0. Our aim is to predict the next state
at time t using the previous states in a non-trivial data-driven
fashion. As shown in Fig. 2, for each object, its previous s-
tates can help to predict its next state in the field domain.
For simplicity, we just consider the most recent L points in
the trajectory to predict the state at time t. To obtain ro-
bust intra-trajectory information, we adopt p̂t−L as the start
point, and all other more current points to define the differ-
ence as ∇p̂l = (p̂t−L+l − p̂t−L)/l, where ∇p̂l is also denot-

ed as ∇p̂l = (∇xl,∇yl)
′
, l = 1, 2, · · · , L. In this way, given

∇p̂1:L−1, the probability of ∇p̂L is defined as:

p(∇p̂L|∇p̂1:L−1) =
e−

1
2 (∇p̂L−u∇p̂l

)TΣ−1(∇p̂L−u∇p̂l
)

2π|Σ| 12
(5)

Here Σ is assumed to be diagonal matrix. To consider the
temporal information, each ∇p̂l is weighted with λl defined

as λl =
e
−l2/δ2

∑
l e

−l2/δ2
. Based on the weight λl, u∇p̂l

and Σ are

defined as u∇p̂l
=

∑L−1
l=1 λl∇p̂l and Σ = diag(δ2∇xl

, δ2∇yl
)

, where δ2∇xl
=

∑L−1
l=1 λl

(
∑L−1

l=1 λl)
2−∑L−1

l=1 λ2
l

L−1∑
l=1

λl(∇xl − u∇xl
)
2
,

and δ2∇yl
has the same form. Finally, p(xt|xt−L:t−1) in Eq.(4)

is defined as p(xt|xt−L:t−1) = p(∇p̂L|∇p̂1:L−1).

2.3. Inter-trajectory Contextual Information

Given the dataset introduced in Section 3.1, for the short tra-
jectory T0, we can obtain its K nearest neighbors by use of
dynamic time warping (DTW) [8], and the K trajectories are
denoted as T1:K . For each Tk, k = 1, . . . ,K, we calculate
the Euclidean distance between its points and p̂t−1, and se-
lect the point p̂s with the smallest distance. Then, we select
L points from the point p̂s to p̂s+L−1 in trajectory Tk to ob-
tain pk(∇p̂i|∇p̂1:L−1) as the same as Eq.(5), where ∇p̂i =
p̂i − p̂t−1, and p̂i is a certain point in field domain. Given
T0 and T1:K , the probability of ∇p̂i for each point p̂i in field
domain is defined as:

p(∇p̂i|T0, T1:K) =
∑K

k=1
ηkpk(∇p̂i|∇p̂1:L−1), (6)

where ηk is the weight of the k-th trajectory and is set to be

ηk = exp(− (Dist(Tk,T0)−u0)
2

2δ20
). The Dist(Tk, T0) is the dis-

tance between two trajectories, and u0 and δ0 are obtained
from the dataset. For each trajectory in the database, we can
obtain its K nearest neighbors, and calculate their distances.
Then, based on all the distances, u0 and δ0 can be obtained.

Based on T0 and the K nearest neighbors, p(xt|x1:t−1, T1:K)
in Eq.(4) is defined as p(xt|x1:t−1, T1:K) = p(∇p̂i|T0, T1:K).

This inter-trajectory contextual information is useful and ef-
fective to improve the object tracking, because the players
in different video clips have similar trajectories as shown in
Fig. 2. For a trajectory T0, if there is no similar trajecto-
ry in the dataset, the K nearest neighbours have very small
weights ηk as shown in Eq.(6). As a result, the probability
p(∇p̂i|T0, T1:K) is very small, and no useful inter-trajectory
contextual information can be exploited. However, this hap-
pens rarely if the dataset is large-scale.

3. EXPERIMENTAL RESULTS
3.1. Dataset and Implemention Details
Our dataset contains 93 low-resolution videos of differen-
t football plays from 10 different teams, each around 400
frames long. Each video contains footage of a single football
play shot from a PTZ camera with a sideline view high above
the field. Fig. 1 depicts a typical view from this camera. The
dataset is very complex. For each team, there are different
background colors and environments as shown in Fig. 2. Ev-
ery video is pre-processed to register frames to an overhead
model of the football field using the method described in [9],
thereby enabling us to determine players’ locations in football
field coordinates.

It is time-consuming to build the database manually.
Therefore, we implement a simple method that does not
make use of inter-trajectory context information and adopt
interactive object tracking. For each video clip, we track 8
to 13 players per frame. To evaluate the performance of the
proposed tracking approach, we randomly select 5 video se-
quences as the testing set, and the rest are used for building
the database. For the testing video clips, we create a tracking
ground truth bounding box of the target in each frame for
quantitative evaluation by manually annotating the data.

To evaluate the performance of our tracker, we use a s-
core based on the PASCAL challenge object detection score:
Given the detected bounding box ROI D and the ground
truth bounding box ROI GT, the overlap score evaluates as
score = area(ROID ∩ROIGT )/area(ROID ∪ROIGT ).
For each track, we get the average score. Then, we average
these scores to obtain the evaluation score for the video. We
compare our method with two state-of-the-art visual trackers
for sports video analysis [1, 10]. For the baselines, we use
publicly available code and adopt the same parameters as the
authors.

3.2. Results and Analysis
Fig. 3 shows the probability map of intra trajectory and in-
ter trajectory contextual information for a short trajectory in
red. The pixel with high probability may be the next position

Fig. 3. Intra trajectory and inter trajectory contextual infor-
mation for a short red trajectory in field domain. The blue
trajectory is its ground truth path in future.
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(a) Online boosting tracker results [10].

(b) Boosted particle filtering tracker results [1].

(c) Our proposed tracker results.

Fig. 4. Tracking results of different algorithms. The number and color of bounding boxes and trajectories show the correspon-
dences between the image domain and the field domain. For a better view, please see the pdf file.

Table 1. The average tracking scores on five video sequences.
Method V ideo1 V ideo2 V ideo3 V ideo4 V ideo5

OAB[10] 0.354 0.394 0.380 0.347 0.297

BPF[1] 0.386 0.404 0.356 0.367 0.295

Ours 0.734 0.756 0.746 0.728 0.689

of state. Based on the probability map, we can confirm the
contextual information is effective to help predict the state.
Moreover, the standard deviation in x coordinate is higher, as
players are more likely to run straight forward. The quantita-
tive results are summarized in Table 1. This table gives the av-
erage tracking scores of each approach in five sequences, and
our method achieves more than 30% improvement. We also
show the tracking results for the three trackers in Fig. 4. From
the results we can see that although the traditional tracking ap-
proaches cannot track the players in American football well,
our proposed method can track the players robustly and stably.
That is because there is not enough appearance information in
the image domain for methods [1, 10]. However, the cross-
domain contextual information is effective to improve object
tracking.

4. CONCLUSION
In this paper, we propose a novel method to track multi-
players in low-resolution videos of American football with
cross-domain context information. Because the camera mo-
tion is eliminated in field domain, object intra-trajectory
context information and inter-trajectory context information
are helpful to predict the players states. Experimental results
on many real-world challenging video clips demonstrate our
method is effective and useful to improve the multi-object

tracking performance. Our cross-domain tracker is generic,
and can also be used in other fields, such as video surveillance.
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