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ABSTRACT 

This paper presents an efficient coarse-to-fine strategy for 
near duplicate image detection in a Riemannian space. At 
the coarse level, we use the faster but less accurate log-
Euclidean Riemannian metric to search the entire database 
to retrieve a subset of the images that are likely to contain 
the near duplicates of the querying image; and at the fine 
level, we use the more accurate but computationally more 
demanding affine-invariant Riemannian metric to search the 
coarse level results to accurately identify near-duplicates. 
We present experimental results to show that the new coarse 
to fine strategy can be over 20 times faster than existing 
techniques using affine-invariant Riemannian metric 
without sacrificing accuracy.  

Index Terms— Riemannian metric, manifold, visual 
saliency, region covariance, near duplicate detection. 

1. INTRODUCTION 
Due to the advance in digital multimedia processing 
technology, broadband internet access and increasing 
popularity of online media sharing, a huge amount of 
multimedia (especially image, video and photo) has been 
flooding websites such as YouTube, Facebook, Flickr and 
many others. Undoubtedly, the easy available multimedia 
contents have largely entertained the public.  However, they 
have also created problems such as copyright infringements 
and wasteful usage of storage space and network bandwidth.  

A key challenge to the successful detection of a copied 
video and image lies in the design of effective video and 
image content descriptors and many schemes have been 
proposed in the literature [1 - 3]. These descriptors can be 
classified into global and local descriptors. The global 
descriptors are generally efficient to compute, compact to 
store, but less accurate in terms of their retrieval quality. On 
the other hand, local descriptors [2] are relatively more 
robust to image transformations, such as occlusion, cropping, 
etc., but they usually demand more memory and 
computational resources.   

In previous recent work, we have developed a compact 
and robust descriptor based on visual saliency and region 
covariance matrices for near duplicate image and video 
detection [4]. The salient covariance (SCOV) descriptor  has 
been shown to provide state of the art performances and has 
the advantages of being compact, discriminative and robust. 
Like other region covariance based descriptors, SCOV’s are 
symmetric, semi-positive defined matrices, which form a 
manifold in a non-vector space. Therefore, Euclidean 

metrics are not applicable to the SCOV descriptors and 
instead the similarities of the descriptors have to be 
measured using the Riemannian metric. In the literature, 
there are two major types of Riemannian metric that can be 
used as a distance measures. One is the affine-invariant 
Riemannian metric [7, 8] which involves intensive use of 
matrix inverse and matrix logarithm [8] or generalized 
eigenvalues [7]. This metric is theoretically elegant but 
time-consuming. Another Riemannian metric is the log-
Euclidean Riemannian metric which first uses matrix 
logarithm to convert the manifold into vector space and then 
calculate the Frobenius norm of the matrix as a distance 
metric [5]. When used for large scale near duplicate image 
detection, this kind of metric is not as accurate as the affine-
invariant Riemannian metric, but it is relatively easy to 
calculate. An added advantage of the log-Euclidean metric 
is that well-developed fast search tools such as hashing 
techniques, e.g., locality sensitive hashing (LSH) [9] can 
used to enhance search efficiency.  

For internet scale near-duplicate image detection, 
efficiency is very important. In this paper, we first present a 
comparative study of the two conventional Riemannian 
metrics for SCOV based near-duplicate image detection 
which showed that, on the one hand, the affine-invariant 
Riemannian metric is more accurate but more time 
consuming, and on the other, log-Euclidean metric is faster 
but less accurate. Based on this discovery, we have 
developed a simple but practical coarse-to-fine strategy to 
enhance the efficiency without compromising accuracy. At 
the coarse level, we use the faster but less accurate log-
Euclidean metric to search the entire database to retrieve a 
subset of the images that are likely to contain the near 
duplicates of the querying image; and at the fine level, we 
use the more accurate but computationally more demanding 
affine-invariant Riemannian metric to search the returned 
subset of the coarse level search. 
 
2. SALIENCT COVARIANCE IMAGE DESCRIPTOR 

Visual saliency has recently attracted a lot of interests in the 
computer vision community and various methods have been 
developed to exploit visual saliency for various tasks such 
as object recognition [6]. In our previous work [4], we 
introduced a covariance matrix based descriptor - the salient 
covariance (SCOV) for near-duplicate image/video 
detection. The SCOV integrate visual saliency and region 
covariance which has been shown to have many merits, such 
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as robust to many kinds of geometric and photometric 
transformations, compact and discriminative.  

Given an image I  Rwxh and let F  Rwxhxd be a d-
dimensional feature image. There are many ways to derive 
the feature image and in this paper we choose F as  
 

 

 
where C1 C2 and C3 are the three color channels such as 
RGB or LMS. The salient features are those F(x, y)’s with a 
corresponding saliency score S(x, y) greater than a threshold   
 

 
 
The covariance matrix of the salient features is defined as 
 

  
 
where,  is the mean of features in the salient region, 

 

3.  RIEMANNIAN METRICS AND COARSE TO FINE 
NEAR-DUPLICATE IMAGE SEARCH 

3.1 Affine Invariant Riemannian Metric 

We denote S(n)={S Rdxd, ST=S}, the space of all n×n 
symmetric matrices and denote P(n)={P(n) S(n), P>0}the 
set of all n×n symmetric positive defined (SPD) matrices. 
For X, Y  S(n), in order to carry out computations with 
these objects, one need to define distance between these 
tensors. As the S(n) is part of vector space of square 
matrices, the easiest way of defining a distance is the 
Frobenius norm, which is equivalent to considering the n×n 
matrices as a n×n vector in Euclidean space. However, this 
ruins the intrinsic structure of the manifold. The symmetric, 
positive semi-defined matrices in P(n) forms a Riemannian 
manifold. The space is not closed under manipulation with 
negative scalars. According to [8], an affine-invariant 
Riemannian metric is given, 
  
Using exponential and logarithm map, the distance between 
two points X and Y is, 

 

Furthermore, (6) is equivalent to 

 

where , k =1, 2, …, d are the joint eigenvalues of  
and  computed as  and  are the 
generalized eigenvectors [8].  
 

3.2 Log-Euclidean Riemannian Metric  
The affine-invariant Riemannian metrics have theoretically 
excellent properties but lead to complex algorithm. The 
affine-invariant distance computation involves intensive use 
of matrix inverse, square roots and logarithms or 
generalized eigenvalues, thus the computation burden is 
high which is essentially due to the curvature of the 
Riemannian space [5].  

The log-Euclidean Riemannian metric is another family 
of metrics which is much simpler to compute. It is defined 
as follows [5].  

 
 

 
where Log(X) is the matrix logarithm which converts the 
manifold into vector space.  

As the fast nearest neighbor (NN) searching algorithm in 
vector space is well-developed, it is relatively easy to find a 
query’s Nearest Neighbors which lies in Riemannian 
manifold through this matrix logarithm. For example, a 
hashing (such as LSH [9]) scheme can be used for NN- 
searching. 
3.3   Coarse to Fine Image Search Strategy 
It should be noted that the conversion in subsection 3.2 is 
only approximate rather than exactly transform, because in 
general there is no such mapping that globally preserves the 
distance between the points on the manifold. The advantage 
of (8) is that it can be computed relatively faster than (7), 
but (7) is more accurate than (8). Based on this observation, 
we have developed a coarse-to-fine searching strategy to 
improve efficiency and at the same time maintain the 
accuracy for near duplicate image detection in the non-
vector space of SCOV descriptors. The strategy consists of 
following steps.  
 
Step1: Convert the Riemannian manifold into vector space 

using matrix logarithm.  
Step2: Use Frobenius norm, which has many fast searching 

algorithms, e.g. LSH, as similarity measure, and 
return a relatively large set of potential targets (we 
found 3000 to be sufficient for our database of 
100,000 images) 

Step3: Use affine-invariant Riemannian metric to search the 
set of potential targets returned in Step 2 for near-
duplicates of the querying image.  

 
4. EXPERIMENT  

We have evaluated the two Riemannian metrics and a 
coarse-to-fine strategy in near duplicate image detection.  
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4.1 Datasets  
The evaluation is performed on two testing datasets and one 
distracting dataset: 

INRIA Copydays dataset [3]  
SYSU_Test, A set of images randomly chosen from 
my image dataset. 
25,000 Flickr images and another 36,480 images 
(totally 61480 images) as distracting image dataset. 

The INRIA Copydays dataset contains 157 original high 
resolution images containing a variety of scene types, such 
as natural, man-made, water, sky, etc. Our testing image 
dataset SYSU_Test contains 977 images randomly 
choosing from my image collections that contains different 
image types. 25,000 Flickr images were downloaded from 
the internet and another 36,480 images are collected from 
various source.  

In original INRIA Copydays dataset [3], there are three 
main kinds of transformations: 

 
resizing plus jpeg compression 
cropping image surface. 
strong transformations including print & scan, 
contrast change, blur, etc  

The first two kinds of transformations are conducted on 
each test images, and the authors only produced 229 
transformed imaged for the strong transformation. 

In this paper, in order to get a comprehensive 
performance evaluation of our algorithm, besides the attacks 
mentioned in [3], we extend the transformation types to the 
two testing image dataset, such as additive noise (salt & 
pepper, Gaussian), flipping, rotate, blur, illumination change, 
combination attacks, etc. For details of transformations, 
please refer to Table 1.  

 
Transformation Transformation parameters 
crop 10%,20%,30%,40%,50%,60%,70%,80% 
rotate 10,20,30,40,50,60,70,80,90,180 (degree) 
flip horizontal , vertical 
salt & pepper 0.05,0.1,0.15,0.2 
Gaussian noise 5,8,10,15,20,25 (psnr) 
illumination 0.6,0.7,0.8,0.9,1.2,1.3,1.4 
jpeg compression 5,8,10,15,20,30,50,75 
combination 
attack 

rotate 45,crop 45, resize 0.45, compression 
quality factor 0.45, median filter 3×3, 
illumination 1.2, salt & pepper noise 0.09 

Table 1: The transformations and transformation parameters 
4.2 Evaluation Criterion  
ROC. The well-known ROC curve is employed to evaluate 
the overall performance. The true positive rate (TPR) and 
false positive rate (FPT) are defined as following. 
 

 

 

mFP is the mean of FPR of  query images while mTP is the 
mean of TPR of query images. In this paper, there are a total 
of 46 transformed copies in the database. These 
transformations have generated 157×46 = 7222 images for 
INRIA Copydays dataset and 977×46 = 44942 images for 
our dataset. All transformed images are then embedded in 
distracting databases. So the total number of images for 
Copydays testing experiment is 7222+25000=32222, 
7222+61480=68702 and total number of images for 
SYSU_Test is 44942+61480=106422. The aim is to use the 
original image as query to retrieve those transformed copies 
of the image.  
mAP. For each query q, there are N copies of q in the 
database. For a total of Q queries, we measure the average 
precision as follows 

 

Where rj is 1 if document j is relevant to the topic. 
 mAP = Expectation(AP) is the mean average precision. This 
metric is also sometimes referred to geometrically as the 
area under the Precision-Recall curve.  
4.3   Result Analysis  
Fig.1 and Fig.2 shows the ROC performances of affine 
invariance Riemannian metric, log-Euclidean metric and the 
coarse to fine strategy. It is seen that log-Euclidean was less 
accurate than affine invariant. For the coarse to fine strategy, 
when returning 3000 images in the coarse stage, it almost 
achieved the same accuracy of the affine invariant, 
demonstrating the effectiveness of the proposed technique.  

Table 2 shows the mAP performances of different metrics 
and different database sizes. It is again seen that affine 
invariant is more accurate than log-Euclidean, while it is 
only necessary for the coarse to fine strategy to return 3K 
image in the coarse level to match the full search results 
based on affine invariant. 

As the affine-invariant Riemannian metric involves 
intensive use of matrix inverse, square roots and logarithms, 
it is very time consuming. While in vector space, the 
Frobenius norm just involves of simple addition and 
multiplication, thus it is relatively efficient. 

We performed our experiments using Matlab R2009a on a 
server with Intel Xeon processor (8 cores, 2.13 GHz) and 8 
GB memory. Table 3 shows the average time per query for 
various metrics and strategies for different database sizes. It 
is seen that both log-Euclidean and the coarse to fine 
strategy scaled very well with database sizes. The speed of 
affine invariant metric was 4 time slower as the database 
size increased from 32K to 106K. As returning 3K will 
enable the coarse to fine strategy achieve the same 
performance as full search affine invariant metric, the new 
strategy was 20 times, 10 times and 5 times faster for 
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database sizes of 106K, 86K and 32K respectively. The 
larger the database is, the higher the speedup will be.   
 

 
Fig. 1: ROC comparison of affine-invariant Riemannian 
metric(SCOV), log-Euclidean metric (LM-SCOV) and 
coarse to fine strategy (CTF-SCOV-3K, CTF-SCOV-1K) 
where 3K and 1K refer to the number of images returned in 
the coarse stage.  
 

 
Fig. 2: ROC comparison of affine-invariant Riemannian 
metric(SCOV), log-Euclidean metric (LM-SCOV) and 
coarse to fine strategy (CTF-SCOV-3K, CTF-SCOV-1K) 
where 3K and 1K refer to the number of images returned in 
the coarse stage.    
 

Database 
size 

 32k 68k 106k 

Affine-
invariant 

0.86 0.82 0.77 

Log-
Euclidean 

0.79 0.71 0.65 

Coarse to 
fine(3k) 

0.86 0.815 0.75 

Table 2 the mAP for different database size and different 
Riemannian metrics. Coarse to fine (3k) means the mAP is 
the result when 3k images are returned in coarse searching 
stage. 

5. CONCLUSION 
In this paper, we evaluated the two major Riemannian 
metric for salient covariance (SCOV) based near duplicate 
image detection. Both Riemannian metrics have weakness, 

the affine-invariant Riemannian metric is very time 
demanding while log-Euclidean Riemannian metric has bad 
detection accuracy. We have presented a simple but 
practical coarse to fine strategy for salient covariance based 
near-duplicate image detection, which can greatly reduce the 
searching time complexity while achieving almost the same 
results.  
 

Database 
size 

32k 68k 106k 

Affine-
invariant

8.48s/query 18.4s/query 32.3s/query 

Log-
Euclidean

0.29 s/query 0.3 s/query 0.36 s/query

Coarse to 
fine(3k) 

1.5s/query 1.56s/query 1.68s/query 

Coarse to 
fine(1k) 

0.45 s/query 0.47s/query 0.50 s/query

Table 3 The average time for per query image 
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