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ABSTRACT 
By describing spatial relationships between feature points, 
we present promising logo recognition and localization, 
which are verified based on two state-of-the-art datasets. 
Given features points on the query logo, similar features on 
test images are efficiently found by locality sensitive hashing. 
After filtering out outliers, candidate regions are found by 
the mean-sift algorithm, and each region is compared with 
the logo by jointly considering visual word histogram and 
visual patterns. Evaluation results show that visual patterns 
more appropriately describe logos and provide better 
performance than previous approaches.  

Index Terms— Logo recognition, logo localization, 
visual patterns

1. INTRODUCTION 
Logos are important symbols for organizations and business. 
They can be seen everywhere, such as sports games, TV 
series, and websites. If we can detect logo objects from 
media, many interesting applications can be developed. 
Many studies have been proposed to detect logos in 
document images [1]. However, logo objects in real-world 
images are often suffered from non-rigid deformation (on T-
shirts or shoes) or reflection (on bottles or cars), which 
makes logo detection in real-world images much more 
challenging than that for document images.  

Joly and Buisson [2] propose one of the first real-world 
image collections specific for logo detection. They also 
propose a SIFT-based matching approach [3] with a query 
expansion strategy to retrieve images with specific logos. 
However, their work solely utilizes local features and does 
not achieve satisfactory performance. Furthermore, they do 
not localize logos, without this many practical applications 
cannot be developed.  

In this paper we propose a logo recognition method 
based on visual pattern matching. Visual patterns are 
constituted by local features with description of spatial 
relationship between them. To speed up process, locality-
sensitive hashing and candidate logo region selection are 
adopted. With the proposed methods, we not only retrieve 
images containing specific logos, and also localize the 
detected logos in images. We conduct comprehensive 

experiments based on two recently-proposed datasets: the 
BelgaLogos dataset [2] and the FlickrLogos dataset [4].  

In the following, Section 2 describes details of the 
proposed logo detection and localization system. Section 3 
provides comprehensive evaluation results, and Section 4 
concludes this paper.  

2. LOGO DETECTION AND LOCALIZATION 
2.1 Overview 
Figure 1 shows the proposed system framework. We first 
extract SIFT features from test images and the logo image. 
Similar features between them are found by using the 
Locality Sensitive Hashing (LSH) [5]. Outlier test images 
are then detected and filtered out to speed up computation. 
According to candidate features in test images, we find 
regions that contain high-density candidate features, and 
from which we decide whether they contain the logo by 
matching bag of visual words and visual patterns.  

We extract SIFT features from an image , and represent 
this image as . Each SIFT feature  [3] is 
represented by a 4-tuple , where the 2D 
vector  represents this keypoint’s location,  is scale of 
this keypoint,  is the main orientation of the 
neighborhood of this keypoint, and  is the 128-dim 
descriptor describing its appearance information. 
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Figure 1. The proposed system framework.  

2.2 Matching Pair-Specific Candidate Features 
To find similar objects between a test image and the logo 
image, we transform this problem as an approximate nearest 
neighbor search problem. Based on the extracted feature 
points, this problem is processed by locality-sensitive hash 
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(LSH) [5]. The basic idea of LSH is to hash input items so 
that similar items are mapped to the same buckets with high 
probability. With the E2LSH (Exact Euclidean LSH) 
package [5], we set a parameter  to find approximate local 
features (  in this work). For each local feature in the 
logo image, we find its -nearest neighbors in test images. 
Because E2LSH adaptively learns feature distributions 
between an image pair, conditions for finding the -nearest 
neighbor vary for different image pairs. This is why we call 
these features “pair-specific” candidate features. 

After this process, we have a large number of pair-
specific candidate features. To further speed up computation, 
we filter out the test images containing too few candidate 
features. If a test image contains less than  pair-
specific candidate features, it is claimed as an outlier. The 
parameter  is set as 0.1, and  is the total number of local 
features in the logo image.  

2.3 Candidate Region Selection 
The logo object may appear anywhere in test images, and is 
often much smaller than the whole image. In this component, 
we cluster neighboring candidate features into regions where 
the logo object may locate. Based on xy coordinates of 
feature points, the mean-shift algorithm [6] is used to 
implement clustering. This algorithm locates the maxima of 
a density function given discrete data points. With this 
algorithm, we do not need to decide the targeted number of 
clusters in advance.  

Assume that  clusters are generated after the mean-shift 
algorithm, denoted by . We design an 
adaptive clusters selection algorithm (c.f. Figure 2) to select 
clusters according to their relative sizes. In this algorithm, 
two thresholds  and  are adaptively updated to 
determine relatively larger clusters. When the ratio of  to 

 is less than a threshold , this algorithm converges 
(  in this work). This algorithm selects appropriate 
candidate regions that contain more pair-specific candidate 
features and may contain the logo object.  
Algorithm: Adaptive clusters selection  

Input: The set of clusters 

1. Threshold setting: 

2. Discard  from  if 

3. Update threshold: 

4. Repeat 

5.     If ,  and goto step 2 

6.     Else goto to step 8 
7. Until 
8. Output 

Figure 2. The adaptive clusters selection algorithm. 

2.4 Visual Word Histogram and Visual Pattern 
To verify whether a candidate region contains a specific 
logo, we describe candidate regions by a visual word 
histogram and visual patterns.  

2.4.1 Visual Word Histogram 
We build up a standard bag-of word representation by 
clustering local features extracted from a set of training 
images [7]. The centroids of clusters form a visual dictionary 

. Given a set of local features 
 extracted from a candidate region or the logo 

image, we consult the visual dictionary to identify each local 
feature’s corresponding visual word by finding the nearest 
visual word  to a local feature . After this step, the 
feature set  is transformed into bag-of-words 
representation. We count numbers of visual words and form 
corresponding visual word histograms after normalization.  

2.4.2 Visual Patterns 
Description 

Visual word histogram is a global representation that states 
statistics of visual word appearance and overlooks spatial 
information. In this work we also describe spatial 
relationship between feature points as visual patterns to 
increase robustness of detection results.  

The spatial relationship between two local features 
and  is characterized by , where  

,  (1) 

,  (2) 

,  (3) 
.  (4) 

The value  denotes the normalized spatial distance 
between  and , which is normalized by the 
corresponding scale to resist image scaling. The notation 
denotes Euclidean distance. The value  denotes the 
relative scale. The value  is the relative heading from 
to , which makes it invariant to image rotation. The value 

 is the relative heading from  to . An example of 
relative headings is illustrated in Figure 3. The function 

 denotes the principle value, which is the value in the 
range . This representation is invariant to translation, 
scale and rotation, and is robust to small distortion.  

θ

θ

Figure 3. An illustrative example of relative headings.  

We compare two relationships  and  by their 
quantized heading values. Given a spatial relationship , its 
two heading values are quantized into a pair of specific 
indices by using the quantization function. That is,  

,  (5) 
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where the function  converts a principle value 
ranging  to , and the constant 
denotes the number of bins to quantize the interval . 
After quantization, two relationships  and  are 
considered consistent if .  

Visual pattern discovery  
We adopt data mining techniques to unsupervisedly find 
visual patterns. By using a graph to represent image features 
and their spatial relationships, a visual pattern can be treated 
as a connected subgraph embedded in this graph.  

Given a set of local features , we build an 
undirected graph (called the root graph) . The 
vertex  corresponds to , and is represented by a 2-
tuple , where  is the vertex label indicating the 
visual word index for . Each edge is represented by a 
three-tuple , where  is the edge label 
determined by . We have 

.  
Given a root graph , any connected subgraph would 

potentially be a visual pattern. To decrease complexity of 
the mining process, some criteria are applied to construct 
appropriate edges. First, a pattern cannot have two vertices 
with the same visual word index. Second, we assume that the 
spatial scatter of a pattern would be in a range. Two features 
that are highly overlapped or far apart can’t be linked by an 
edge. Third, we should consider a pattern’s repeatability 
across different images. Only features in nearby scales are 
connected. Overall, we construct an edge between two 
vertices with different vertex labels, if their spatial 
relationship fulfills the following equation.  

. (6) 
The values  and   are thresholds for  (eqn. 
(1)), and the value  is the threshold for  (eqn. (2)).  

Given a root graph  constructed from a 
candidate region or from the logo image, we exhaustively 
find subgraphs in it. With the constraints mentioned above, 
the root graphs from candidate regions are much smaller 
than the graph from the whole image. Furthermore, in this 
work we constrain that the order of a pattern (i.e. the number 
of vertices) should be three. Note that a larger-size visual 
pattern has more discriminability but less repeatability 
across images. Therefore, too large patterns cannot serve as 
good models to detect visual patterns across images.  

A set of subgraphs are finally obtained from each root 
graph and serve as the representation of visual patterns. To 
compare any two subgraphs, we encode a subgraph into a 
string code called the canonical label. Two subgraphs are 
isomorphic and called matched if they have identical 
canonical label. Given a subgraph, its canonical label is 
obtained by concatenating all its vertex labels and the upper-
triangular entries of its adjacency matrix. In order to make 
this string invariant to vertex ordering, a naïve way is to try 
all possible permutations of vertices, produce a set of strings 

from all such permutations and its corresponding adjacency 
matrix, and then choose the lexicographically largest one as 
the canonical label for this subgraph [8]. Efficient 
implementation of this process please refers to [8].  

2.5 Distance Calculation 
We jointly consider visual word histograms and visual 
patterns to more appropriately measure distance between a 
candidate region and the logo. Based on visual word 
histograms, we define a distance  as  

,  (7) 
where  and  denote the visual word histogram of the 
logo and a candidate region, respectively. The value 
denotes numbers of visual words.  

Based on visual patterns, the distance  between a 
logo  and a candidate region  is calculated as  

,  (8) 

where  denotes the number of matched visual patterns, 
and  is set as 1 to avoid zero denominator. If more visual 
patterns are matched, the candidate region  is more similar 
to the logo . 

We jointly consider two clues to decide whether a logo 
exists in a test image. A weighting  is set to prioritize two 
measures mentioned above. The integrated measure is  

.  (9) 
If the integrated distance is less than a threshold , the logo 
is claimed to be detected in the candidate region (  = 0.3 in 
this work). 

3. EXPERIMENTS 
We evaluate the system on the BelgaLogos dataset [2], 
which includes 10,000 images and 26 different logos. Each 
image can contain one or several logos or no logo at all. 
There are totally 22,572,764 SIFT features in the dataset. To 
extract visual word histograms and visual patterns, we 
construct a size-50 visual vocabulary. The size-50 
vocabulary is constructed based on 1% of total SIFT feature 
points in the dataset. For visual pattern discovery, the 
parameter  is set as 8, and the thresholds 

, , and  are set as 2, 30, and 0.6, 
respectively.  

Performance of logo detection 
We use precision and recall to demonstrate detection 
performance. If multiple logos are found in the same image, 
we only count them once for calculating precision and recall. 
Table 1 shows evaluation results of our system and [2], 
while they only provide precision values. Only average 
results are shown for the 26 logos due to space limitation. 
From Table 1 we clearly see the superior precision value for 
our work. Our system works badly for some logos, such as 
Addidas, CocaCola, Ecusson, and Nike. Our work is built 
based on local features, and if we do not extract enough 
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local features from a query logo image, our system has little 
ability to detect logos.  

We also compare with the works in [9] (first round result) 
and [10]. Only six logo detection results were specially 
reported in their results, as shown in Table 2. We again can 
find that the proposed approach is better than other methods. 
Our approach not only utilizes features similarity but also 
considers spatial relationship between features, while other 
approaches only use feature similarity. If enough local 
features can be extracted from a query logo, we can clearly 
describe logo characteristics by using visual patterns, such 
as President and Dexia.  

We also test our system based on the FlickrLogos dataset 
and compare it with Romberg’s work [4]. Overall, we obtain 
0.58 in precision, and Romberg et al. obtained 0.61 in 
precision. However, we do not need to individually train a 
model for each logo. Instead, simply one query logo is used 
for logo recognition. More detailed experimental results 
would be provided in the future due to space limitation.  

Table 1. Detection results of our system and [2]. 
 Joly [2] Our Precision Our Recall 

Average 0.257 0.300 0.190 

Table 2. Detection results of our system, [9], and [10]. 
Coca
Cola 

Dexia Ferrari Mercedes Peugeot President 

[10] P 0.00 0.43 0.02 0.25 0.00 0.09 
 R 0.00 0.02 0.03 0.09 0.00 0.64 

[9] P 0.00 0.81 0.01 0.92 0.01 0.05 
 R 0.00 0.03 0.01 0.15 0.17 0.36 

Ours P 0.00 0.90 1.00 1.00 0.05 0.67 
R 0.00 0.48 0.01 0.04 0.40 0.85 

Table 3. Average overlap ratio for different logos.  
Logo name Average Logo name Average 
Adidas-text 0.921 Peugeot 1.000
Base 0.889 President 0.973
Citroen 0.946 Puma 0.852
Cofidis 0.900 Puma-text 1.000
Dexia 0.928 Quick 0.836
Eleclerc 0.759 SNCF 0.671
Ferrari 1.000 Stella 0.800
Kia 0.888 VRT 0.685
Mercedes 0.669   
Overall 0.866 

Performance of logo localization 
If a candidate region is claimed to contain logos, we 
determine positions of logos by locations of candidate 
regions. In the BelgaLogos dataset, logos are usually smaller 
relative to the whole image, and locations of logos in images 
are not well defined. Therefore, we manually define 
coordinates of minimum bounding boxes of the detected 
logos for the localization experiment. The ratio of the 
overlap area to the detected region is calculated: 

.  (10) 
Table 3 shows localization results for images retrieved 

by our system. The average overlap ratio is 0.866. Some 
examples of logo localization are shown in Figure 4.  

Figure 4. Example results of the detected logos.  

4. CONCLUSION 
We have presented an approach to automatically detect and 
localize logo objects in images. The pair-specific concept 
facilitates us to only capture relevant features between a 
query logo and a test image. Candidate regions are found by 
using the mean-shift method, and visual word histograms 
and visual patterns jointly describe logo objects. Our system 
works well for two large-scale databases (i.e., BelgaLogos 
and FlickrLogos). In the future, more comprehensive 
experiments will be conducted and new features will be 
designed to avoid bad performance for some logos.  
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