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ABSTRACT

For video annotation refinement, a reasonable concept 
correlation representation is crucial. In this paper, we 
present a data-specific concept correlation estimation 
procedure for this task, where the resulting correlation with 
respect to each data encodes both its visual and high-level
characteristics. Specifically, this procedure comprises two 
major modules: concept correlation basis estimation and 
data-specific concept correlation calculation. Under the 
framework of sparse representation, the former introduces a 
set of high-level concept correlation bases to represent the 
concept distribution of each feature-level basis, while the 
latter constructs the concept correlation of a specific data by 
combining its feature-level sparse coefficients and
correlation bases together. In the end, given this new 
correlation, a probability-calculation based video annotation
refinement is performed on TRECVID 2006 dataset. The 
experiments show that such a representation capturing data-
specific characteristics could achieve better performance,
than the generic concept correlation applied to all data.

Index Terms— video annotation refinement, concept 
correlation, sparse representation

1. INTRODUCTION

Recently, for the sake of better performance, concept
correlation defining the relationship between concepts has 
played an important role in video annotation (or concept 
detection) refinement [1,2,3]. Especially for the popular
Context-based Concept Fusion (CBCF) [4], this contextual
knowledge is encoded into a context-based model and acts 
as a post-processing to refine the initial results derived from 
individual concept detectors.

Considered as the guidance to refinement, a reasonable
concept correlation representation is crucial. Normally, the
statistics of concept co-occurrence and their extended forms
such as normalized mutual information [3] and Pearson 
product-moment correlation are leveraged, producing a
single concept correlation applied to all data. Although this 
generic correlation ideally carries exact relationships among 
all concepts, it may be not as effective as expected in

practical video annotation refinement, e.g. in the scenario
that ‘Sky’ and ‘Beach’ are strongly related in the context of 
outdoor while almost unrelated for meeting, the correlation 
between ‘Sky’ and ‘Beach’ should vary with the data to be 
refined other than keep constant. In other words, though this 
generic correlation has learned an 'ideal' relationship of them, 
it could not simultaneously meet both of these two cases, 
even neither of them, instead, becomes biased to hurt the 
refinement performance. Thus, we claim that in contrast to 
generic correlation, a finer representation dependent on 
specific data is expected to yield a better refinement result.

In other side, these aforementioned measures usually 
stem from a large-scale text dataset like the ground truth 
annotations, Word Net [6] and web-search lists [7]; and 
hence generate pure high-level generic concept correlations.
However, in fact, except for this high-level textual clue,
visual features regarded as the external representations of 
concept also contribute to concept correlation. This factor is
emphasized in [7] by presenting a visual concept correlation 
based on visual similarities between images, but its linear 
summation with the high-level one still results in a generic 
relationship, having suppressed the visual property of 
specific data, e.g. visually similar data often contain the 
same concepts and accordingly may convey similar concept
distributions. In this sense, a reasonable combination of 
visual characteristics into data-dependent correlation is also 
considered important for the following refinement.

Motivated by these observations, this paper presents a
data-specific concept correlation estimation procedure for 
video annotation refinement, where the resulting correlation
with respect to each data encodes both its visual and high-
level characteristics in a natural way. The basic idea is as 
follows: under the framework of sparse representation, the 
original feature-level space could be broken into several 
clusters, each conveying certain ‘representative visual 
object’ and accordingly manifesting ‘representative concept 
distribution’; likewise to the effect of feature-level bases, 
these distributions are expected to be capable of spanning
the high-level correlation space, and thus referred to as 
concept correlation bases in this paper; finally together with 
feature-level sparse coefficients these new bases are used to 
construct the concept correlation of a specific data, just 
analogous to the reversed process of data decomposition. To 
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this end, two major modules are involved in this work:
concept correlation basis estimation and data-specific 
concept correlation calculation. Specifically, on basis of 
sparse representation, the former derives a set of concept 
correlation bases to represent the concept distribution of 
each feature-level basis, while the latter constructs the 
concept correlation of a specific data by combining its 
feature-level sparse coefficients and concept correlation 
bases together. Finally, unlike those complicated context-
based models commonly used in CBCF, this paper 
formulates this new correlation into a probability calculation 
based scheme to refine the initial results derived from 
multiple detectors. And the final experiments conducted on 
TRECVID 2006 dataset demonstrate its effectiveness.

The rest of this paper is organized as follows: Section 2 
presents the whole refinement framework; Section 3 details 
the key modules; and the experiment setup and results are 
described in Section 4; finally the conclusions are given.

2. DATA-SPECIFIC CONCEPT CORRELATION 
ESTIMATION FOR ANNOTATION REFINEMENT

In this paper, data-specific concept correlation based video 
annotation refinement is proposed as an instance of CBCF.
As formulated by Eq.1, for a shot classified by concept
detector ( , concepts in total), its refined 
posterior probability  is a result of the interaction 
of initial result and other detectors 
weighted by data-specific concept correlation .
Additionally, a tradeoff factor is introduced 
to tune the contributions of initial result and refinement term.

(1)

Central to this formulation, is calculated
based upon the following two modules: 
1. Concept correlation basis estimation: to derive 

feature-level bases ( ) and concept
correlation bases .

2. Data-specific concept correlation calculation: to derive
data-specific correlation utilizing and 

obtained above.
So far, the final refinement algorithm could be rewritten

as Eq.2, where is the sparse coefficient for shot .

(2)

3. KEY MODULES

3.1. Concept correlation representation

In the light of the probability-calculation based refinement 
described by Eq.2, the conditional probability that concept 

appears with the existence of is adopted to represent 
the concept correlation in this paper. Given the concept co-
occurrence information in a ground truth annotation set , it
is calculated as:

(3)

where is the count of and concur 
within the same shot belonging to . is the 
count that occurs in .

3.2. Concept correlation basis estimation

Sparse representation, decomposing signals into a series of 
sparse coefficients with respect to fixed bases, has been well
applied in many fields, such as face recognition, image 
denoising, etc [8,9]. In the same way, each video shot also
could be decomposed into some fixed feature-level bases,
along with corresponding coefficients. Starting from this, for 
each feature-level basis, those shots that have made efforts
to its generation are likely to convey some common visual 
characteristics and thus clustered together to denote implicit
‘representative visual object’. After that, the concept 
correlation gathered within each cluster results in one 
correlation basis to describe the concept distribution of each
feature-level basis, and meanwhile is assumed to be
representative enough to span the correlation space, just
similar to the effect of feature-level bases. To determine 
these new bases, the detailed steps are given as follows:

Step.1: For the training dataset, the dictionary learning 
and sparse representation algorithm is employed [10], to 
obtain the dictionary and the sparse coefficient with 
respect to each data .

(4)

where is the sparsity measure. denotes the dimension 
of feature space and is the number of feature-level bases 
constituting the dictionary .

Step.2: By taking the learned dictionary as cluster 
centers, all original data are reorganized into clusters, i.e. for 
each feature-level basis , those data whose coefficients
satisfie are assigned to cluster .

Step.3: Grounded on Eq.3, the concept correlation 
bases are estimated within each cluster .

3.3. Data-specific concept correlation calculation

In the reversed process of data decomposition, the derived 
feature-level bases together with sparse coefficients could 
reconstruct the original shot. In like manner, it is supposed
that concept correlation bases spanning the correlation space
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could also form the data-specific concept correlation, via 
treating those feature-level coefficients as weighting factors. 
In other words, by acting like that, this procedure provides a
natural solution to combine the data-specific visual (sparse 
coefficients) and high-level (concept correlation basis) 
characteristics together. In detail, the calculation for 

is described like:
Step.1: For each testing shot , , it is 

sparsely represented byy according to Eq.5.

(5)

Step.2: The coefficients are leveraged as the
weighting factors to combine the concept correlation bases

together to form the final 

(6)

Finally, according to Eq.1, the refinement is carried out
based on and posterior probabilities of all 
detectors including .

4. EXPERIMENT

4.1. Experimental setup

In this paper, we adopt TRECVID 2005 dataset including its 
ground truth annotations for concept correlation basis
estimation, and TRECVID 2006 for evaluation on data-
specific correlation based refinement. Since we only focus 
on the result of detectors other than their construction, 374
concept detectors provided by Columbia374 are employed 
as baseline [11]. In accord with the test setting in TRECVID 
2006, we only utilize 20 official concepts in light evaluation 
to evaluate the results, in terms of inferred average precision 
(infAP) for each concept and mean infAP (MAP) over all
concepts. Note that the outcome of Columbia374 on 
TRECVID 2006 testing data, adopted as the initial result to 
be refined later, has gained an MAP of 0.0948.

4.2. Experimental result and discussion

This section details our experimental results with different 
parameter settings. In addition, a detailed comparison on 
generic and data-specific concept correlations is given as 
well.

4.2.1. Experiment 1: generic concept correlation based 
video annotation refinement
As an approximation of , the generic concept 
correlation estimated over all annotations is 
utilized to conduct the refinement according to Eq.1. To
balance the contributions made by initial result and 
refinement term, we list its refinement results under different 
tradeoff factor settings.

Table.1. Performance on generic concept correlation based refinement with 
different tradeoff factors

0.1 0.15 0.25 0.35 0.5 0.75
MAP 0.1190 0.1199 0.1176 0.1149 0.1083 0.1002

Table.1 tells that MAPs at different are all larger than 
that of baseline, which has validated the positive role of 
concept correlation in annotation refinement. According to 
these results, we select the optimal for our
proposed procedure in next subsection.

4.2.2. Experiment 2: data-specific concept correlation
based video annotation refinement
As it concerns sparse representation, we empirically let the 
sparsity measure in Eq.4 and Eq.5 be . Given 
determined in Section 4.2.2, Table.2 lists the performance of 
our method with different numbers of feature-level bases.

Table.2. Performance on data-specific concept correlation based 
refinement with different numbers of feature-level bases

10 20 30 40 50
MAP 0.1246 0.1266 0.1276 0.1282 0.1293

60 70 80 90 100
MAP 0.1305 0.1301 0.1293 0.1289 0.1273

As shown in Tabel.2, when our approach gains
the best MAP, with around 37.66% improvement compared 
to baseline, and 8.84% to generic concept correlation based 
refinement. Such a promising result has demonstrated that 
correlation bases which decompose the correlation space do
have made contributes to enhancing the descriptive ability of 
concept correlation and thus devoted efforts to improve the 
refinement. On top of this, it is also found that when
the performance is getting better with the increase of number
of feature-level bases. This is consistent with the conclusion 
above that finer correlations are more likely to denote these
various ‘representative objects’ and hence could intensively
capture the data content. While for , MAP has 
decreased but is still larger than that of generic one. We
attribute this slight drop to the over fitting correlation bases, 
which are caused by the limited size of ground truth 
annotation set.

4.2.3. Comparison on generic and data-specific concept 
correlations
In addition to the comparison on MAP, this subsection gives 
an intuitive insight into concept distributions supplied by 
generic and data-specific correlations. We take a testing shot 
involving ‘Police_Security’, ‘Military’, ‘Car’, ‘Truck’ and 
‘Explosion_Fire’ (they are termed as related concepts, while 
the other 369 as unrelated) as an example. For simplicity, we 
only exemplify the correlations between ‘Police_Security’
and 35 concepts in Fig.1, where the brighter the block is, the 
stronger the correlation is.

It can be seen that, for data-specific correlation, the 
distribution of related concepts is more or less consistent 
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with the generic one, which has capsulated the major data 
content. But better than that, in data-specific representation 
the correlations between ‘Police_Security’ and some 
unrelated concepts like ‘Outdoor’, ‘People-Marching’ and 
‘Face’ are suppressed as well, enabling it to reduce the risk
of bringing in unnecessary noise. Thus from this perspective, 
we can say that the data-specific correlation could be more
coherent with the data content and consequently lead to a 
better refinement performance. In addition, it is worth to 
note that the correlation between ‘Police_Security’ and 
‘Prisoner’ is reinforced. Indeed, among the limited data 
annotated by ‘Prisoner’ (133 shots) about 25% (30 shots) are 
simultaneously labeled by ‘Police_Security’. Therefore, it is 
easy to assign the shots that contain ‘Police_Security’ as 
well as other concepts related to ‘Prisoner’ with large 
coefficients with respect to feature-level bases dominated by
‘Police_Security’ and ‘Prisoner’. Even so, whether the final 
result involves the unexpected ‘Prisoner’ or not also depends 
on the initial detection scores. But still, it is reasonable to
suppose that under a larger-scale working set the proposed 
data-specific concept correlation would work better.

5. CONCLUSIONS

In this paper, we have proposed a data-specific concept 
correlation estimation procedure for video annotation 
refinement. Firstly, a set of concept correlation bases is 
introduced to capture the representative high-level concept
correlation corresponding to each feature-level basis. Then,
for a specific data, its concept correlation is calculated like a
reversed process of data decomposition, based on feature-
level sparse coefficients and correlation bases. This data-
specific correlation encoding both visual and high-level
characteristics has been proved effective on TRECVID 2006
testing set. And compared to the generic concept correlation,
our approach could achieve better performance. 

In the future, as concluded in Section 4.2.3, a larger-
scale working set, such as web-search lists, will be adopted 
to generate a richer representation. Furthermore, allowing 
for the content evolvement in video stream, temporal 
concept correlations will be considered as well.
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Figure.1. An example of comparison on generic (upper part) and data-specific concept correlation (lower part),
for testing shot ‘’shot12_207’ between ‘Police_Security’ and other 34 concepts truncated from the original 374-concept set
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