
SYMMETRIC GENERALIZED LOW RANK APPROXIMATIONS OF MATRICES

Kohei Inoue, Kenji Hara, and Kiichi Urahama

Kyushu University, Department of Communication Design Science
4-9-1, Shiobaru, Minami-ku, Fukuoka, 815-8540 Japan

ABSTRACT

Recently, the generalized low rank approximations of matri-
ces (GLRAM) have been proposed for dimensionality reduc-
tion of matrices such as images. However, in GLRAM, it
is necessary for users to specify the numbers of rows and
columns in low rank matrices. In this paper, we propose
a method for determining them semiautomatically by sym-
metrizing GLRAM. Experimental results show that the pro-
posed method can determine the optimal ranks of matrices
while achieving competitive approximation performance.

Index Terms— Dimensionality reduction, GLRAM,
symmetric GLRAM, matrices

1. INTRODUCTION

Principal component analysis (PCA) and linear discriminant
analysis (LDA) are well-known techniques for dimensionality
reduction. Since they are based on vectors, matrices such as
2D face images must be transformed into 1D image vectors
in advance. However, the resultant vectors usually lead to a
high-dimensional vector space, where it is difficult to solve
the (generalized) eigenvalue problems for PCA and LDA.

Recently, Yang et al. [1] have proposed 2DPCA, and
Ye [2] has proposed generalized low rank approximations
of matrices (GLRAM). These methods can handle matrices
directly without vectorizing them. Ye [2] proposed an itera-
tive algorithm for GLRAM, which will be summarized in the
next section. In GLRAM [2], a matrix �� is approximated by
the low rank matrix �� � �����, and Ye’s iterative algo-
rithm [2] renews two matrices � and � alternately. On the
other hand, Liang and Shi [3] and Liang et al. [4] proposed
an analytical algorithm which does not need to iterate the
renewal procedure. Liang’s analytical algorithm [3, 4] selects
the better one from two cases: � calculated with an initial-
ized � and � calculated with an initialized �. However, Hu
et al. [5] and Inoue and Urahama [6] showed that Liang’s an-
alytical algorithm [3, 4] does not necessarily give the optimal
solution of GLRAM. Liu and Chen [7] also proposed a non-
iterative algorithm for GLRAM. However, Liu’s non-iterative
algorithm [7] does not select the better one from the two cases
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in Liang’s analytical algorithm [3, 4] but always outputs the
former case. Therefore, Liu’s non-iterative algorithm [7]
cannot outperform Liang’s analytical algorithm [3, 4]. Lu et
al. [8] proposed another non-iterative algorithm which calcu-
lates � and � independently. However, the same algorithm
as Lu’s one [8] has been shown in the paper [6] already.

In GLRAM [2], it is necessary for users to specify the
number of rows �� and that of columns �� in the low rank ma-
trix ��. Ye [2] experimentally showed that the good results
are obtained when �� � ��. Additionally, Liu et al. [9] de-
rived a lower bound of the objective function for GLRAM
and showed that the minimization of the lower bound results
in �� � ��. Ding and Ye [10] have also shown the same lower
bound as Liu’s one.

In this paper, we propose a method for determining � �
and �� semiautomatically by symmetrizing GLRAM [2]. Al-
though the matrices handled in GLRAM [2] are asymmet-
ric generally, in the proposed method, we construct symmet-
ric matrices from the asymmetric ones to derive symmetric
GLRAM. In the proposed method, �� and �� are semiautomat-
ically determined from the sum � � �����, therefore, the users
do not need to specify them. Experimental results show that
the proposed method achieves better objective function values
than the conventional method when � is fixed to a constant.

The rest of this paper is organized as follows: Section 2
summarizes GLRAM [2], Section 3 proposes symmetric
GLRAM, Section 4 shows experimental results, and Sec-
tion 5 concludes this paper.

2. GENERALIZED LOW RANK APPROXIMATIONS
OF MATRICES

Let �� � ����� � � �� � � � � 	 where � denotes the set of real
numbers. Then the generalized low rank approximations of
matrices ����

�
��� (GLRAM) are formulated as follows [2]:

���
�� �� �	������
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���
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�
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(1)

subj.to ��� � 
�� � �
�� � 
�� � (2)

where � � ����� � � � ����� for �� � �� �� � 
, 
�� and

�� denote the identity matrices of orders �� and ��, and � � �
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Table 1. Ye’s algorithm [2].
Algorithm GLRAM
Input: matrices ����

�
���, ��, and ��

Output: matrices �, �, and ����
�
���

1. Obtain initial �� for � and set �� �;
2. While not convergent
3. form the matrix �� �

��

����
�
� �����

�
�����;

4. compute the �� eigenvectors ���� �
��
��� of ��

corresponding to the largest �� eigenvalues;
5. �� � ���� � 	 	 	 � �

�
��
�;

6. form the matrix �� �
��

���
�����

�
� �

�
� .

7. compute thte �� eigenvectors ���� �
��
��� of ��

corresponding to the largest �� eigenvalues;
8. �� � ���� � 	 	 	 � �

�
��
�;

9. �� �� �;
10. EndWhile
11. �� ����;
12. �� ����;
13. For 
 from 1 to �
14. �� � �����;
15. EndFor

denotes the Frobenius norm. If � and � are given, then the
optimal �� is obtained by �� � �����. From
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(3)
and that

��

��� ����
�
� is a constant with respect to � and �,

the above minimization problem (1) may be rewritten as

���
�� �

��
���

�������
���
�
� (4)

Ye’s algorithm [2] for this problem is summarized in Table 1,
in which �� and �� need to be specified by hand. Ye [2] ex-
perimentally showed that the good results are obtained when
�� � ��. Liu et al. [9] also derived the same result as Ye’s
one [2] from the minimization of a lower bound of the objec-
tive function of GLRAM.

3. SYMMETRIC GLRAM

In the above GLRAM [2], given matrices �� ��
�
��� are asym-

metric generally. In this section, we construct symmetric ma-
trices from the asymmetric ones ����

�
��� as follows:

�� �

�
	��� ��

�

�� 		�	

�
� 
 � �� � � � � �� (5)

and then propose a low rank approximation method for sym-
metric matrices ��������, where	��� denotes a �� � zero ma-

trix. The symmetric GLRAM for ����
�
��� becomes

���
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subj.to 
�
 � ��� (7)

where 
 � ��	�����, �� denotes the identity matrix of order
�, and � � � � �. Let � �
� be the objective function in (6).
Then we find that
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from which the Lagrange function for (6) with (7) is given by
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where 	 � ���� is a symmetric matrix of which the elements
are the Lagrange multipliers and tr denotes the matrix trace.
Then we have the necessary conditions for optimality:
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From (10), we have
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���
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���
 � 
	� (12)

and, from (11), we have 
 �
 � ��, which is no less than the
constraint in (7). Based on (12), we propose an algorithm in
Table 2, where input data are matrices ����

�
��� and the rank

� or the number of columns in 
 . While Ye’s algorithm [2]
in Table 1 needs both �� and �� for � and � respectively, the
proposed algorithm in Table 2 needs only � for 
 .

The details of the algorithm in Table 2 are as follows:
First we form symmetric matrices ����

�
��� defined by (5)

(Line 1). Next we compute the � eigenvectors � �������� cor-
responding to the largest � eigenvalues of

��

��� �
�
� and then

initialize 
 as 
� � 
���� � � � � ����, and initialize the num-
ber of iterations, �, as � � � (Line 2). Then, for example,

 after � iterations is expressed as 

. In the iterative pro-
cedure, we first form � �

��

��� ��

��

�

���� and then

compute the � eigenvectors ����
�
��� corresponding to the

largest � eigenvalues of � to form 

 � 
��� � � � � ���. We re-
peat this procedure until the convergence condition described
below is satisfied (Lines 3-8). We used the convergence
condition as RMSE�����

�RMSE���

RMSE����� � � for � � �� 
� � � �, where

RMSE�
� denotes the root mean square error RMSE�
� ��
�
�

��

���

���� � 

��

�
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�



���
�

after � iterations
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Table 2. The proposed algorithm
Algorithm Symmetric GLRAM
Input: matrices ����

�
���and �

Output: matrices �, �, and ����
�
���

1. Form symmetric matrices ����
�
���.

2. Obtain initial �� for � and set �� �;
3. While not convergent
4. form the matrix � �

��

���
�������

�
�����;

5. compute the � eigenvectors �	������ of �
corresponding to the largest � eigenvalues;

6. �� � �	�
 � � � 
 	��;
7. �� �� �;
8. EndWhile
9. � � ����;

10. � � � �;
11. � � � �;
12. For � from 1 to �
13. 
� ��� � �
 ��;
14. � � ���� � � � � �
 ��;
15. If �
� � ���
16. �� ��
 
�;
17. Else
18. �� ��
 ��;
19. EndIf
20. EndFor
21. For � from 1 to �
22. �� � �����;
23. EndFor

and � is a positive constant, provided that RMSE��� ��
�
�

��

��� ��� � ���
�
� �����

�
� �

�
� . We express the con-

verged �� as � (Line 9). Then we make � and � from � as
follows: First we initialize� and� to empty arrays (Lines 10,
11). Let � be a vector of which the elements are the first � ele-
ments in the �th column of� (Line 13) and let 	 be a vector of
which the elements are the rest 
 elements in the �th column
of� (Line 14). If ��� � �	� (Line 15) then add � into the last
column of� (Line 16), or else add 	 into the last column of �
(Line 18). For � � �� � � � � 
, we repeat this procedure (Lines
12-20). Since the diagonal blocks of � � are zero matrices as
shown in (5), the �th column �� � �

��� of � � ���� � � � � �	�
has the form like ���
� � � � � � ��
� � �� � � � � ��� � ��� � �� � � � � ���

or ��� � � � � �� ����
�� � � � � ����
� �
� � ��� � � � � �� 	� �� . The

lines 15-19 in Table 2 describe the procedure for extracting
the nonzero elements � or 	. Finally, we compute the low
rank approximation of �� by �� � ����� (Lines 21-23).

4. EXPERIMENTAL RESULTS

In this section, we show experimental results on the ORL face
image database [11]. Fig. 1 shows face images in the ORL
database [11]. The ORL database [11] contains face images
of 40 persons. For each person, there are 10 different face
images. In our experiments, we used the first 5 images per

Fig. 1. Face images in the ORL face database [11].
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person, i.e., � � � � �� � 	��. The height and width of an
image are 
 � ��	 and � � 
	 pixels, respectively.

In Ye’s GLRAM [2], it is shown that the good results are
obtained when


� � 
� (13)

is satisfied [2, 9]. Thus, we call the GLRAM with the con-
straint (13) the constrained GLRAM (CGLRAM), and com-
pare it with the proposed method.

Let �� � ���� and �� � ���� be the matrices � and
� obtained by CGLRAM, where � � 	��	�

� , and let �
 �
���	� and �
 � ���	� be that by the proposed method.
Then we evaluate the value of � �

��

����
����


���


���
�
�����

�����

���
�
�, that is, the difference between the two ob-

jective function values. If � � �, then the objective func-
tion value obtained by the proposed method is larger than
that by CGLRAM. The value of � is shown in Fig. 2, where
the vertical axis denotes � and the horizontal axis denotes

 � 	� � 
� � 
�. In this figure, � is positive in almost all
range of 
, and therefore the objective function value by the
proposed method is larger than or equal to that by CGLRAM.
Since the proposed method accepts different values for 
 � and

�, the objective function value may be different from that by
CGLRAM. The values of 
� and 
� is shown in Fig. 3, where
the proposed method and CGLRAM are denoted by the solid
and the broken lines, respectively.

Additionally, in CGLRAM, the value of 
 � 
� � 
� � 	�
is restricted to even numbers, and therefore we cannot se-
lect odd numbers for 
. On the other hand, in the proposed
method, we can select both even and odd numbers for 
. The
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Fig. 4. Variation in the objective function value.

objective function value for the proposed method is shown
in Fig. 4, where the solid and the broken lines correspond to
the parity of �, i.e., odd and even numbers, respectively. The
overlap between the solid and the broken lines in this figure
shows that the proposed method achieves comparable perfor-
mance when � is an odd number, with that when � is an even
number. Finally, the reconstructed images ��� � ����

�

are shown in Fig. 5, where the leftmost images are the origi-
nal ones and the corresponding reconstructed images for � �
�� ��� ��� � � � � �� are arranged to their right.

Thus, in the proposed method, only � is needed to com-
pute the low rank approximations of matrices instead of � �
and �� for GLRAM [2]. Furthermore, while � � �� � �� in
CGLRAM is restricted to even numbers, the proposed method
accept both even and odd numbers for �.

5. CONCLUSION

In this paper, we proposed a method for determining semiau-
tomatically the numbers of rows and columns in low rank ma-
trices in the generalized low rank approximations of matrices
(GLRAM) by symmetrizing GLRAM, and experimentally
showed that the proposed method achieves larger objective
function value than the conventional GLRAM (CGLRAM)
which uses the same numbers of rows and columns. Ad-
ditionally, while the total number of rows and columns in
CGLRAM is restricted to even numbers, the proposed method
accepts both even and odd numbers of rows and columns of
low rank matrices.

Fig. 5. Original images (the leftmost column) and their re-
constructed images.
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