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ABSTRACT
Although ordinary least squares (OLS) regression achieves

great success in clean image interpolation, its effectiveness

is questionable in the scenario of web images which are usu-

ally compressed beforehand. The inherent flaw of OLS is that

it is asymmetric, the perturbation is only confined on the right

side of the linear system. It is not reasonable for web images.

Considering the drawback of OLS, in this paper, we propose

an efficient web image interpolation algorithm based on total

least squares (TLS) regression. In the proposed method, small

perturbations are allowed in both side of the system, which are

optimized by TLS in a patch-based manner. Furthermore, we

develop a weighted version of TLS to consider contribution

diversity of different samples and patches in model estima-

tion, which can efficiently remove the influence of outliers in

regression. Experimental results on benchmark test images

demonstrate the efficiency of our method.

Index Terms— Web image interpolation, ordinary least

squares, total least squares

1. INTRODUCTION

With the rapid development of social network and internet

technology, more and more people would like to share their

photos in websites and retrieve their wanted images by search

engines. Due to the limitation of bandwidth and server stor-

age, in many cases, web images need to be downsampled and

compressed, and only when concerned they are then upsam-

pled to the original resolution to show more information to

the user. Image retrieval is a typical example. When we input

a keyword, the search engine returns a lot of related images,

which are shown in their low-resolution (LR) form in order

to give users more choice to choose their really interested

one. When users click the chosen image, the original high-

resolution (HR) image will be transmitted from the server. If

the original one is not available, image interpolation technol-

ogy is needed to recover the LR image to its original resolu-

tion. This case often happens due to the limitation of server

storage space or congestion of internet. From the above ex-

ample, we can find image interpolation technology plays an

important role in web image services.

Image interpolation itself is a very active research topic in

image processing. In the literature, many image interpolation

algorithms have been proposed [1-6]. Bilinear and bicubic are

two popular global methods based on classical data-invariant

linear filters. In [1], Zhang and Wu propose to interpolate a

missing pixel in multiple directions, and then fuse the direc-

tional results by minimum mean square-error estimation.

Due to the power of image modeling, linear auto-regression

(AR) model based methods have received more and more at-

tention, which integrate edge direction information into AR

model parameters. There are two representative works in the

literature: NEDI and SAI. They are both based on the geo-

metric duality between the LR and HR covariance. The NEDI

method, proposed by Li and Orchard [2], estimates local co-

variance coefficients from a LR image and then project the

estimated covariance to the HR image to adapt the interpo-

lation procedure. Zhang and Wu propose the SAI algorithm

[3], which learns and adapts varying scene structures using a

locally linear regression model, and interpolates the missing

pixels in a group by a soft-decision manner. NEDI and SAI

achieve promising results in both objective and subjective

performance. However, both NEDI and SAI only consider

quality degradation by downsampling, and never consider the

influence of compression noise on estimation of AR model

parameters. This is not reasonable for practical applications

of web images interpolation, where compression is widely

adopted.

In the literature, Xiong et al. [4] also consider the problem

of compressed image interpolation, and propose a robust web

image/video super-resolution algorithm in a learning-based

manner. However, it needs an additional training image set

for offline learning. Zhang et al. in [5] propose a joint denois-

ing and zooming algorithm under the LMMSE framework,

which is based on the assumption that the noise is additive

white Gaussian noise. However, for compressed noise, this

assumption is usually not satisfied.

Essentially, NEDI and SAI are both based on ordinary

least squares (OLS) regression, which is in a asymmetry man-

ner and not suitable for compressed image interpolation. Con-

sidering the drawback of OLS, we propose an efficient algo-

rithm based on total least squares (TLS) regression in an on-

line manner. In the proposed method, small perturbations are

allowed in both side of the system. Furthermore, we develop

a weighted version of TLS to consider contribution diversity

of different samples and patches in model estimation, which
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can efficiently remove the influence of outliers in regression.

The rest of this paper is organized as follows. In Sec-

tion 2, we give a brief description of OLS and TLS. Section 3

discusses the algorithm details. Experimental results are pre-

sented in Section 4. Section 5 concludes the paper.

2. PROBLEM DESCRIPTION

Image interpolation can be regarded as a data fitting problem.

Conceptually and algorithmically, fitting linear models to data

can be achieved by solving a system of equations:

Aw = b, (1)

where the matrices A is the data matrix and the vector b is the

observation vector. They are constructed from the given data.

The vector w represents the parameters of the to-be-found

model. NEDI and SAI exploit the OLS manner to address

such problem. Despite great diversity in implementation, they

invariably consider solving approximately an overdetermined

system of equations.

The ordinary least squares approximation is obtained as a

solution of the following optimization problem:

{ŵLS ,ΔbLS} = argmin
w,Δb

‖Δb‖2 (2)

subject to Aw = (b+Δb).

The rationale behind this approximation method is to correct

the right-hand side b as little as possible in theL2 norm sense.

And we can obtain an optimal solution with a close form as:

ŵLS =
(
ATA

)−1
ATb. (3)

Although ordinary least squares regression achieves great

success in clean image interpolation, its effectiveness is ques-

tionable in the scenario of compressed images. The inherent

flaw of ordinary least squares is that it is asymmetry, the per-

turbation is only confined to the right side b and consider the

left side A is noise-free. It is not true for compressed image,

since there also is compression noise in the data matrix A.

Instead, in this paper, we propose to develop an efficient

compressed image interpolation algorithm based on total least

squares (TLS), in which small perturbations are allowed in

both side of the system. The total least squares (TLS)[7][8]

problem can be written as:

{ŵTLS ,ΔA,Δb} = argmin
w,ΔA,Δb

‖[ΔA Δb]‖F (4)

subject to (A+ΔA)w = (b+Δb)

where the subscript F denotes the Frobenius norm, and ΔA
and Δb are the perturbations on the left and right side of the

linear system respectively. Supposing the singular value de-

composition of the data matrix [A b] is

[A b] = UΣV T (5)

= [UA Ub]

[
ΣA 0
0 Σb

] [
VAA VAb

VbA Vbb

]T

where the matrices are partitioned according to the dimen-

sions of A and b. The close form solution to the general TLS

problem in (4) is

ŵTLS = −VAbV
−1
bb . (6)

3. WEIGHTED TOTAL LEAST SQUARES
REGRESSION FOR INTERPOLATION

In this section, we develop a practical compressed image in-

terpolation algorithm based on weighted total least squares

regression. First, we will introduce the interpolation model

used in our method, then multi-scaled image patch selection

strategy is presented, at last the weighted total least squares

regression is detailed.

3.1. Interpolation Model

Suppose we are given a compressed LR image L, we want

to get its corresponding HR image H . We first give a initial

estimation Ĥ of the original HR image by using some sim-

ple image interpolation algorithms, such as bicubic. Let x be

the current unknown pixel to be estimated. We crop an im-

age patch centered on x from Ĥ and re-order it into a column

vector denoted by b ∈ Rm. Let B = {bi}j=n
i=1 ∈ Rm×n be a

collection of image patches from L and Ĥ in the local neigh-

borhood of the current pixel x. We build the relationship be-

tween the LR image and its corresponding original HR image

in a linear combination manner:

Bw = b, (7)

where w ∈ Rn is the model parameter vector. In practical

image interpolation applications, in general, we cannot find

such w making the above equation true. Therefore, we relax

the problem and allow small perturbations in both b and B:

(B+ΔB)w = b+Δb, (8)

where Δb ∈ Rm and ΔB ∈ Rm×n are the perturbations in

b and B, respectively. It is reasonable for compressed image

interpolation since both the data matrix B and the observation

vector b have compressed noise.

Furthermore, B and b can be centralized as

b̃i = bi − b̂i, b̃ = b− b̂, (9)

where b̂i and b̂ are average vector with each elements are the

average value of bi and b, respectively. Therefore, we can

solve for w by addressing the following optimization prob-

lem:

{ŵTLS ,ΔB,Δb} = argmin
w,ΔB,Δb

‖[ΔB Δb]‖F . (10)

subject to (B̃+ΔB)w = (b̃+Δb)
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3.2. Multi-scaled Image Patch Selection

In the interpolation model described above, the observation

vector b is regarded as a linear combination of basis vectors,

{bi}. Therefore, {bi} plays a very important role in model

estimation, and they should be reasonably similar to b in or-

der to capture image features in b. We exploit a multi-scaled

manner to collect image patches based on the geometry dual-

ity between the LR image and the HR one. Therefore, intra-

scale and inter-scale correlation are exploited simultaneously

to achieve accurate model estimation.

First, we consider the correlation across different scales,

and we collect image patches {bL
i } from the LR image in a

local neighborhood around x. Second, we take into account

the correlation in the same scale. Then, image patches {bH
i }

are cropped from the estimated HR image Ĥ in a local neigh-

borhood centered in x. In this way, a set of image patches

{bi} including {bL
i } and {bH

i } is constructed. Note that all

of chosen patches are with the same size as b. With such

a procedure, the local statistics of the variables can be accu-

rately computed so that the image edge structures can be well

preserved.

3.3. Weighted Total Least Squares

In the optimization procedure defined in subsection 3.1, dif-

ferent patches are considered equally important to determine

the model parameters. However, the similarity between dif-

ferent patches to the current patch are diversity. We should

incorporate such difference in minimization to achieve more

accurate model estimation.

We introduce Wintra as the intra correlation matrix to ac-

count for the similarity between each pixel in one patch and

the center pixel which is the one being estimated. In par-

ticular, the Radial Basis Function (RBF) kernel is utilized

to compute intra weights decreasing with distance from the

neighborhood center, as formulated as follows.

φl = exp
{−||xl − x0||2/σ2

s

}
, σs > 0, 0 ≤ l ≤ m−1 (11)

where x0 and xl are location vectors of the center pixel and

the lth pixel in one patch, and σs is a bandwidth parame-

ter with the value 0.5. As such the diagonal weight matrix

Wintra reflects the quality of the data in the local neighbor-

hood through measuring its �2 distance to the central model.

The smaller is the distance the bigger is the weight assigned to

the row of the data. Another matrix Winter is also introduced

to reflect the inter correlation between different patches with

the observation vector b. Similarly, we can define the column

weight matrix Winter = diag(ψ1, ψ2, . . . , ψn), with

ψi = exp
{−G · ||bi − b||2/σ2

p

}
, σp > 0, 1 ≤ i ≤ n (12)

whereG is a Gaussian kernel used to take into account the dis-

tance between the central pixel and other pixels in the patch,

and bi represents the pixel vector re-ordered from the ith

patch, and σp is a bandwidth parameter with the value 0.5.

This patch comparison permits a reliable similarity measure

involving pixels which can fall far away from each other. And

this weighting process help to penalize larger models so as to

prevent model overfitting.

With the intra and inter correlation matrix, we can replace

the Frobenius norm in (4) into a weighted matrix norm to ex-

press the relative importance of different pixel and patch in

estimating the parameters of the model.

{ŵWTLS ,ΔB,Δb} = argmin
w,ΔB,Δb

‖Wintra[ΔB Δb]Winter‖F
(13)

subject to (B̃+ΔB)w = (b̃+Δb)

where Wintra weights the rows and Winter weights the

columns of [ΔB Δb]. Therefore we can choose the row

and column weight to reflect the properties of the data in the

matrix [ΔB Δb].
Based on the TLS solution given in (6), the WTLS prob-

lem in (13) has a close form solution as

ŵWTLS =
(√

Wintra

)−1

(−VAbV
−1
bb )

(√
Winter

)−1

.

(14)

With the WTLS solution, we can get the prediction b̄ and pick

up the center value as the estimation of the current pixel x.

4. EXPERIMENTAL RESULTS

In this section, experimental results are presented to verify

the performance of the proposed algorithm. For comparison,

we test three other interpolation methods, including DFDF

[2], NEDI [3], and SAI [4]. We select several standard test

images of size 512× 512, as depicted in Fig. 1.

In our experiments, we first downsample each image by

a factor of two to get the LR image, which is further com-

pressed by JPEG with three quality factors (QF): 60, 70 and

80. Note that QF is chosen from [0, 100], and 100 represents

the highest quality image without any compression. Then, the

results are interpolated back to their original sizes.

Fig. 1. Five sample images in the test set.

Let us consider the objective and subjective quality com-

parison of five algorithms. We quantify the average objective

quality over the whole image by PSNR, and we exploit EP-

SNR to focus on fidelity of image edges. In our study, the So-

bel edge filter is used to locate the edge in the original image,

and the PSNR of the pixels on the edge are used to generate

the EPSNR [6]. Although PSNR and EPSNR can measure
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Table 1. Objective and subjective quality comparison of four interpolation algorithms for compressed images

Method /QF
DFDF NEDI SAI TLS

PSNR EPSNR SSIM PSNR EPSNR SSIM PSNR EPSNR SSIM PSNR EPSNR SSIM

/60 28.96 19.91 0.8828 27.79 18.37 0.8769 28.74 19.85 0.8802 29.07 20.02 0.8837

Airplane /70 29.25 19.97 0.8944 28.06 18.47 0.8884 29.31 19.93 0.8945 29.41 20.14 0.8953

/80 29.41 20.02 0.9004 28.16 18.51 0.8941 29.49 19.98 0.9015 29.56 20.19 0.9012

average 29.20 19.96 0.8925 28.01 18.45 0.8864 29.18 19.92 0.8921 29.35 20.11 0.8934
/60 21.79 18.12 0.6364 21.75 17.74 0.6393 21.95 18.26 0.6482 22.18 18.41 0.6527

Baboon /70 21.96 18.23 0.6561 21.97 17.84 0.6613 22.18 18.42 0.6709 22.42 18.57 0.6757

/80 22.05 18.31 0.6657 22.09 17.96 0.6718 22.31 18.51 0.6814 22.53 18.67 0.6863

average 21.93 18.22 0.65273 21.93 17.84 0.6574 22.14 18.39 0.6668 22.38 18.55 0.6716
/60 27.92 23.46 0.7859 27.57 22.94 0.7761 27.94 23.33 0.7867 28.05 23.61 0.7888

Couple /70 28.22 23.58 0.8009 27.85 23.19 0.7905 28.31 23.61 0.8035 28.38 23.84 0.8043

/80 28.37 23.67 0.8084 27.96 23.23 0.7977 28.48 23.66 0.8118 28.53 23.93 0.8121

average 28.17 23.57 0.7984 27.79 23.12 0.7881 28.24 23.53 0.8006 28.32 23.79 0.8017
/60 30.89 28.08 0.7302 30.83 27.41 0.7342 30.82 28.06 0.7263 30.98 28.14 0.7331

Elaine /70 30.96 28.29 0.7321 30.91 27.56 0.7365 30.87 28.33 0.7268 31.08 28.37 0.7361

/80 30.97 28.53 0.7325 30.91 27.76 0.7375 30.85 28.55 0.7261 31.11 28.58 0.7373

average 30.94 28.31 0.7316 30.88 27.57 0.7361 30.84 28.31 0.7264 31.06 28.36 0.7355

/60 30.67 22.47 0.8281 28.76 18.32 0.8252 30.53 21.93 0.8265 30.73 22.51 0.8282

Peppers /70 31.01 22.61 0.8371 28.97 18.34 0.8347 30.89 22.11 0.8364 31.08 22.67 0.8374

/80 31.18 22.67 0.8421 29.09 18.41 0.8393 31.06 22.16 0.8414 31.27 22.77 0.8424

average 30.95 22.58 0.8357 28.94 18.35 0.8330 30.82 22.06 0.8347 31.03 22.65 0.8361

the intensity difference between two images, it is well-known

that they may fail to describe the visual perception quality of

the image. We further choose SSIM as the metric for image

visual quality assessment.

Table 1 tabulates the objective and subjective quality com-

parison. It is clearly seen that for all instances the proposed

algorithm consistently works better than other three meth-

ods in terms of average PSNR. For all cases, our method

also achieves best performance measured by EPSNR, which

means the proposed method can better preserve edge struc-

ture. We also give the subjective quality comparison with re-

spect to SSIM. It can be easily observed the proposed algo-

rithm produces better performance compared with SAI. Such

results clearly demonstrate the superiority of the proposed

method in reconstructing the high frequency, such as edges

and textures, from compressed LR images.

5. CONCLUSION

In this paper, we present an efficient compressed image inter-

polation algorithm based on total least squares (TLS) regres-

sion. Different from ordinary least squares, in our method,

small perturbations are allowed in both side of the system,

which are optimized by TLS in a patch-based manner. Fur-

thermore, weighted TLS is developed to consider contribution

of different samples and patches in model estimation, which

can efficiently remove the influence of outliers in regression.

Experimental results demonstrate that our method achieves

very competitive performance compared the state-of-the-art

methods in both objective and subjective quality.
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