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ABSTRACT

We propose a novel computational method for composit-

ing low-dynamic-range (LDR) images into an high-dynamic-
range (HDR) image by the use of a comparametric camera
response function (CCRF), which is the response of a virtual

HDR camera to multiple inputs.

We demonstrate the use of this method with a simple

probabilistic joint estimation model, that accounts for Gaus-

sian noise, using iterative non-linear optimization to compute

the CCRF. We achieve a speedup of ≈2500×, relative to

direct calculation using the probabilistic model.

This method can be implemented as a multidimensional

lookup table, and enables realtime HDR video with any cam-

era response function model, and any compositing algorithm

based on pixel value and exposure.

1. INTRODUCTION

1.1. Motivation

A common method of compositing multiple LDR images to

form an HDR image is to estimate the photoquantity1 by in-

dependently transforming each of the input images to esti-

mates of the photoquantity, and combining the results using

a weighted sum[1][2][3][4]. More sophisticated methods, for

example using per-pixel non-linear optimization, are difficult

to apply directly, particularly in a realtime context[5][6][7].

In this work we decompose the problem in a novel way, en-

abling non-linear optimization for realtime HDR video.

1.2. Mathematical Notation

In this paper f as a function represents the camera response
function (CRF), and as a scalar is a tonal value, and as a ma-

trix is a tonal image (e.g. a picture from a camera). We con-

sider a tonal value f to vary linearly with pixel value but on

the unit interval, and given an n-bit pixel value v returned

from a physical camera, we use fi = (v + 0.5)/2n, where

1 Often called radiance or luminance, though actually neither since the

spectral response of cameras is not flat nor the same as the human eye.
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Fig. 1: Graph structure of pairwise comparametric image compositing. The HDR im-

age f
(4)
1 is composited from the LDR source camera images f

(1)
1...4. Nodes f

(j>1)
i are

rendered here by merely scaling and rounding the output from the comparametric cam-
era response function (CCRF). To illustrate the details captured in the highlights and
lowlights in the LDR medium of this paper, we include a spatiotonally mapped LDR

rendering of f
(4)
1 .

we have N images, i ∈ {1, . . . , N}, and each image has ex-

posure ki. The subscript indicates it is the i-th in a Wyckoff
set[3], i.e. a set of images differing only in exposure, and by

convention ki < ki+1 ∀ i < N . The notation f−1 means the

mathematical inverse of f if it has only one argument, and

otherwise means a joint estimator2 of photoquantity, q.

1.3. Prior work

Robertson et al. state, “The first report of digitally combining

multiple pictures of the same scene to improve dynamic range

appears to be Mann[1]”[8]. In this section, we review this

approach, which is also the most popular framework in prior

work[7][8]. Estimates q̂i(x) ∈ R≥0 of the photoquantity q at

2“Joint estimator” is used here in the sense that each photoquantity esti-

mate depends simultaneously on multiple measurements.
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Fig. 2: CCRF-based compositing of a single pixel. The floating-point tonal values f1
and f2 are the arguments to the CCRF f ◦ f−1

ΔEV
which returns a refined estimate of an

ideal camera response to the scene being photographed. This virtual camera’s exposure
setting is equal to the exposure of the lower-exposure image f1.

each spatial location x = (x, y) are determined independently

from each input LDR image. Note that omitting x indicates

the entire spatial domain.

Camera output is given as fi = f(kiq+nqi)+nfi where

nqi and nfi are quantigraphic and imaging noise processes.

Estimating photoquantity q requires knowledge of f−1, so

that q̂i = f−1(fi)/ki. These estimates q̂i are then combined

using a weighted sum to produce a single estimate q̂ of the

photoquantity present in the original scene.

2. PROPOSED COMPOSITING METHOD

2.1. Compositing as Joint Estimation

Our approach for creating an HDR image from N input LDR

images begins with constructing a notional N -dimensional in-

verse CRF. We could then estimate photoquantity q̂ by writing

q̂ = f−1(f1, f2, ..., fN )/k1, where f−1 is a joint estimator

that may be implemented as an N -dimensional lookup table
(LUT). Recognizing the impracticality of this for large N , we

now consider pairwise recursive estimation.

2.2. Pairwise Estimation

Assume we have N LDR images that are a constant change

in exposure value apart, so that ΔEV = log2 ki+1 − log2 ki is

a positive constant ∀ i ∈ {1, . . . , N − 1}. Now consider the

case N = 2, with exposures k1 = 1 (without loss of gener-

ality, since exposures only have meaning in proportion to one

another), and k2 = k. Then our estimate of the photoquan-

tity is q̂ = f−1
ΔEV

(f1, f2), where ΔEV = log2 k. To apply this

pairwise estimator to N = 3 input images, we can write

f(q̂) = f(f−1
ΔEV

(f(f−1
ΔEV

(f1, f2)), f(f
−1
ΔEV

(f2, f3)))).

In this expression, we first estimate the photoquantity q based

on images 1 and 2, and then again based on images 2 and 3,

then these are combined, using the same joint estimator.
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Fig. 3: An alternative graph structure for pairwise comparametric image compositing.

This pairwise estimation process may be expanded to any

number N of input LDR images, using the recursive relation

f
(j+1)
i = f(f−1

ΔEV
(f

(j)
i , f

(j)
i+1)),

where j = 1, . . ., N − 1, and i = 1, . . ., N − j. The final

output image is f(q̂) = f
(N)
1 , and in the base case, f

(1)
i is the

i-th input image. This recursive process may be understood

graphically as in Fig. 1. This process forms a graph with es-

timates of photoquantities as the nodes, and comparametric

mappings between the nodes as the edges.

Rather than storing values of f−1(f1, f2), we instead

store f(f−1(f1, f2)) for runtime efficiency. We call this a

comparametric camera response function (CCRF), since it

always has the domain of a comparagram and range of a cam-

era response function. A single estimation step using a CCRF

is illustrated in Fig. 2. We use the same CCRF throughout,

since f ◦f−1 returns an exposure that is at the same exposure

value as the less-exposed of the two input images (recall that

we set k1 = 1), so the ΔEV between images remains con-

stant at each subsequent level. All lookups per level can be

performed in parallel, and N(N − 1)/2 recursive lookups are

used in total.

2.3. Alternative graph topology

Other connection topologies are possible, for example in the

case N = 4, we can trade memory usage for speed by com-

positing using the form

f(q̂) = f(f−1
2ΔEV

(f(f−1
ΔEV

(f1, f2)), f(f
−1
ΔEV

(f3, f4)))),

in which case we only perform 3 lookups at runtime, instead

of 6 using the previous structure. However, we must store

twice as much lookup information in memory: for f ◦ f−1
ΔEV

as before, and for f ◦ f−1
2ΔEV

, since the results of the inner

expressions are no longer ΔEV apart, but instead are twice as

far apart in exposure value, 2ΔEV, as shown in Fig. 3.
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Fig. 4: Comparametric model fitting. Preferred saturation model parameters were
found via non-linear optimization, using the method of least-squares with the Leven-
berg–Marquardt algorithm. The optimal comparametric model function, determined per
color channel, is plotted directly on empirical comparasums to verify a good fit. Com-
parasums are sums of comparagrams from the same sensor with the same difference in
exposure value ΔEV. They are shown range compressed using the log function, and
color inverted, to show finer variation. Best results for comparametric compositing are
found when the camera response function model parameters are optimized against a
range of k values. Here k1 = 1 and k2 = 8, k3 = 64, k4 = 512 which implies that
for comparametric image compositing we would use ΔEV = 3.

As a recursive relation for N = 2n, n ∈ N we have

f
(j+1)
i = f(f−1

jΔEV
(f

(j)
2i−1, f

(j)
2i )),

where j = 1, . . ., log2 N, and i = 1, . . ., N/2j−1. The final

output image is f(q̂) = f
(log2 N+1)
1 , and f

(1)
i is the i-th input

image. This form requires N−1 lookups. In general, by com-

bining this approach with the previous graph structure it can

be seen that comparametric image composition can always be

done in O(N) lookups ∀ N ∈ N.

2.4. Constructing a CCRF lookup table

To create a CCRF f ◦ f−1(f1, f2, ..., fN ), the ingredients re-

quired are a camera response function f(q), and a method

to estimate q̂ by combining multiple measurements. Then

f ◦ f−1 is the camera response evaluated at the output of the

joint estimator, and is a function of 2 or more tonal inputs fi.
To create a LUT means sampling through the possible

tonal values, so for example, to create a 1024×1024 LUT

we could execute our q̂ estimation algorithm for all combi-

nations of f1, f2 ∈ {0, 1
1023 ,

2
1023 , . . . , 1} and store the result

of f(q̂) in a matrix indexed by [1023f1, 1023f2], assuming

zero-based array indexing. Intermediate values may be esti-

mated using linear or other interpolation.

2.5. Incremental Updates

In the common situation that there is a single camera captur-

ing images in sequence, it is easy to perform updates of the

final composited image incrementally, using partial updates,

by only updating the buffers dependent on the new input.

3. EXAMPLE JOINT ESTIMATOR

In this section we describe a simple joint photoquantity es-

timator, using non-linear optimization to compute a CCRF.

Examples of the results of this estimator are in Figs. 1 and 3.

Fig. 5: Trace plot of estimated standard deviations from a comparagram. Each estimate
is proportional to the inter-quartile range (IQR), calculated from each column f1 and
row f2 of a comparagram; here using ΔEV = 3 as given in Fig. 4. Gaussian smoothing
is applied to reduce discontinuities due to edge effects, quantization, and other noise.

3.1. Probabilistic Model for CCRF

Let scalars f1 and f2 form a Wyckoff set, and let random vari-

ables Xi = fi − f(kiq), i ∈ {1, 2} be the difference between

observation and model, where k1 = 1 and k2 = k.

The probability of q̂, given f1 and f2, is then

P (q = q̂|f1, f2) = P (q)P (f1|q)P (f2|q)
P (f1, f2)

=
P (q)P (f1|q)P (f2|q)∫∞
0

P (f1|q)P (f2|q) dq
∝ P (q = q̂)P (f1|q)P (f2|q).

For simplicity, we choose a uniform prior, which gives us

Pprior(q = q̂) = CONSTANT. Assuming zero-mean Gaussian

noise, from Xi we have

Pmodel(fi|q) = Normal(μXi
= 0, σ2

Xi
)

=
1√

2πσXi

exp

[
− (fi − f(kiq))

2

2σ2
Xi

]
.

We use the “preferred saturation”[4] model for f(q), as in

Fig. 4. The variances σ2
Xi

can be estimated from the inter-
quartile range (IQR) along each column and row of the com-

paragram, i.e. using the “fatness” of the comparagram. A ro-

bust statistical formula, based on the quartiles of the normal

distribution, gives σ̂ ≈ IQR/1.349, as shown in Fig. 5.

To maximize P (q = q̂|f1, f2) with respect to q, we re-

move constant factors and equivalently minimize −log(P ).
Then the optimal value of q, given f1 and f2, is

q̂ = argmin
q

[
(f1 − f(q))2

σ2
X1

+
(f2 − f(kq))2

σ2
X2

]
.

In practice good estimates of optimal q values can be found

using, for example, the Levenberg–Marquardt algorithm.

915



4. RESULTS AND DISCUSSION

4.1. Implementation

We have implemented the proposed methods in Sections 2

and 3 in the C++ programming language for CPU code. We

also implemented the method of Section 2 on a GPU (Graph-

ics Processing Unit). The performance results are in Table 1.

In Figs. 1, 2 and 3, the image compositing and photo-

quantity estimation were performed using the methods of Sec-

tions 2 and 3, with a pre-processing step of dark-frame sub-

traction. The camera images used were taken using a Flea3

CCD FireWire Video Camera from Point Grey Research, Inc.

of Richmond, BC, Canada.

The time required to construct 6 of the 1024×1024 CCRF

LUTs for 3 color channels and 2 different ΔEV values using

the algorithm of Section 3 was 20 sec., using an Intel 3.2GHz

i7-970 CPU with Linux 2.6 running multithreaded code. The

red CCRF for ΔEV = 3, resulting from the algorithm of Sec-

tion 3, is shown in Fig. 2.

4.2. Discussion

Using direct computation for iterative methods is not feasi-

ble for realtime HDR video. For our simplistic probabilistic

model given in Section 3, it takes over a minute (∼65 sec.)

to compute each output frame using a single processor. Us-

ing the proposed method of Section 2, the multicore speedup

is over 2500× for CPU-based computation, and 3800× for

GPU-based computation (versus CPU), as shown in Table 1.

Since GPUs implement floating-point texture lookup with

linear interpolation in hardware, and can execute highly paral-

lelized code, our method would seem to be a natural applica-

tion of GPGPU (General Purpose Graphics Processing Unit)

computation[9]. However, much of the time is spent waiting

for data transfer between host and GPU; incremental updates

are useful in this context, because we can re-use data and re-

sults from previous estimates, only transferring new data.

The selection of the size of the LUT depends on the range

of exposures for which it is used. It was found empirically that

1024×1024 samples of a CCRF is enough for the dynamic

range of our setup. Further increases in the size of the LUT

made no noticable improvement in output video quality.

5. CONCLUSION

We have proposed a novel computational method for using

multidimensional lookup tables, recursively if necessary, to

estimate HDR output from LDR inputs. The runtime cost is

fixed, irrespective of the algorithm implemented, if it can be

expressed as a comparametric lookup. Pairwise estimation

decouples the specific compositing algorithm from runtime,

enabling a flexible architecture for realtime applications. We

demonstrate a speedup of three orders of magnitude for non-

linear optimization based photoquantity estimation.

Method
Direct CCRF, CCRF,

Calculation Full Update Incremental

Platform Speed in output Frames Per Second (FPS) Speedup

CPU (serial) 0.0154 51 78 5065×
CPU (threaded) 0.103 191 265 2573×
GPU – 272 398 –

Table 1: Performance of pairwise composition versus direct calculation of composite
HDR image on 4 input LDR images of 640×480 pixels each. The CPU used is an Intel
3.2GHz i7-970, and the GPU is an NVIDIA GTX 460. Six 1024×1024 CCRFs were
used, one per color channel per ΔEV. Since our Flea3 camera delivers a maximum of
120FPS, the rate was extended by presenting the same images 10× to each algorithm,
doing a full copy each time to negate caching effects. The direct calculation performed
simultaneous optimization on 4 inputs, however the resulting images were not observed
to be significantly different than pairwise estimation in our experiments.
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