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ABSTRACT
We propose robust affine-invariant contour descriptor and
measure for shape matching under nonlinear deformations.
The descriptor is formed by orthonormal configuration matrix
of local contour. The geodesic distance on Grassmann man-
ifold is used to measure similarities of shapes under locally
affine transformations, which can approximate complex de-
formations like articulations. A rigorous perturbation analysis
proves that condition numbers of configuration matrices are
critical for robustness. Then a method to improve matching
stability using the condition numbers is deduced. Commonly
used contour matchers, e.g., dynamical programming and
others, are all applicable to the descriptor to obtain satisfied
matching. Experimental evaluations are given using both
synthetic and real-world images.

Index Terms— Affine invariance, contour descriptor, shape
measure, Grassmann manifold, perturbation analysis.

1. INTRODUCTION

Shape or contour matching receives increased attentions in re-
cent years. Such a problem typically consists of three parts:
shape description, similarity measure, and matching based
upon the measure, where the measure is typically coupled
with the descriptor. Our contribution is that we propose a new
shape descriptor with a new similarity measure, which can be
used for different matching methods. After introducing basic
affine invariance, we deduce the orthonormal configuration
matrices (OCM) of local contours as descriptors, and use the
geodesic distance on Grassmann manifold to measure simi-
larity of descriptors under locally affine transformations. The
proposed shape descriptor with measure is theoretically solid,
robust and fully affine invariant to approximate complex de-
formations, especially the articulated motion.

A number of shape description and matching methods
have been proposed in the literature, we mainly review those
with certain invariant properties: The widely used Fourier de-
scriptors were generalized to affine-invariant descriptions [1].
Boundary moments [2] of contours are invariant to transla-
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tion, rotation and scaling. Contour described by differential
geometry [3] results in affine invariant curvature, which is
sensitive to noise due to high-order derivatives. The shape
invariant signature [4] is based on algebraic invariants.

The shape context (SC) [5] is well-known, which has been
generalized to inner-distance shape context (IDSC) [6]. A
limitation of them is that they lack mathematical interpreta-
tions to predict their performance. There are researches us-
ing angles as contour descriptions, which may be invariant to
scale [7] or to translation and rotation [8]. The work of [9]
uses a descriptor which is also a generalization of SC by con-
sidering both the length and angle description. Our previous
work [10] adopts sorted diagonals (SD) of orthogonal projec-
tion matrices to form affine invariant descriptions.

There are work using Grassmann manifold [11, 12], most
of them focus on global shape measures. Our work is differ-
ent from them in two folds: First, we establish a local shape
measure, which is available under complex shape transforma-
tions like perspective, nonrigid and articulation. Second, we
propose a detailed perturbation analysis, then deduce an ap-
proach to improve matching robustness using condition num-
bers of configuration matrices.

2. CONTOUR DESCRIPTOR AND MEASURE

Considering in general two shape contours CX , CY ⊂ R
2 with

mx and my (mx �= my) landmark points, we aim to establish
point correspondences between them. To determine if two
points xi ∈ CX and yj ∈ CY are matched, we take 2 ≤ n ≤
min(mx,my) contour points neighboring respectively to xi

and yj to form configuration matrices Xi, Yj ∈ R
n×2 [10],

where each row of Xi or Yj is the point coordinate xT
i or yT

j .
We assume thatXi and Yj are of full rank, and they are related
by a nonlinear transformation like perspective or articulation
in the case that xi and yj are correspondence. Since both Xi

and Yj are local, we may approximate locally the nonlinear
transformations using affine transformations. By introducing
the centerized configuration matrices [10] X̆i and Y̆j to re-
move the effect of translation, we have

Y̆j = X̆iA, (1)

where A is a 2 × 2 nonsingular matrix representing affine
transformations like rotation, scaling and skewing. Note that
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this equation may have the reverse-order problem, i.e., the
rows of X̆i may not correspond directly to the rows of Y̆j ; see
Section 4 later for detailed treatments.

Eq. (1) indicates that the column spaces R(Xi) of Xi and
R(Yj) of Yj are identical [13], i.e.,

R(Yj) = R(Xi). (2)

Thus we may use the subspaces as invariant description to
local contours, and determine the similarity of xi and yj by
measuring a distance between the subspaces:

γ(xi,yj) := dist[R(Xi),R(Yj)], xi ∈ CX ,yi ∈ CY . (3)

but we need concrete and specific forms of the above descrip-
tion and distance for practical computations. Let Θi,Ωj ∈
R

n×2 be the orthonormal configuration matrices (OCM),
whose columns form orthonormal bases for the subspaces
R(Xi) and R(Yj) respectively, we use Θi and Ωj as local
contour descriptors of points xi and yj . Next we require to
choose a specific form of the subspace distance. The sub-
spaces R(Xi) and R(Yj) are both 2-dimensional spaces of
the n-dimensional space R

n where the column vectors of
Xi and Yj lie in. Thus R(Xi) and R(Yj) are elements of
the Grassmann manifold G(2, n) [14], on which the geodesic
distance is given by

dist[R(Xi),R(Yj)] =
√
θ2
1
+ θ2

2
, (4)

where θ1 ≥ θ2 are the two principal angles between R(Xi)
and R(Yj). Numerical methods to compute the principal an-
gles are well studied [15]: By computing the following thin
singular value decomposition (SVD)

ΘT
i Ωj = UΣV T , Σ = diag(σ1, σ2),

whereΘi andΩj are contour descriptors, i.e., the orthonormal
matrices from X̆i and Y̆j ; U ∈ R

n×2, V ∈ R
2×2, UTU =

V TV = V V T = I , σ1 and σ2 are the two singular values
with σ1 > σ2, we have the relation

cos θi = σi, i = 1, 2. (5)

Though the SVD is required, the computation of principal an-
gles is not very time-consuming since the space dimension
is only two. Fig. 1 illustrates the use of the descriptor and
measure to match articulated shapes.

3. PERTURBATION ANALYSIS

This section analyzes the stability of the descriptor and mea-
sure under perturbations of contour points; this will reveal
key factors to affect robustness of contour matching, then de-
duce approaches to improve the robustness. We consider how
the principal angles between R(Xi) and R(Yj) change when
the elements in Xi and Yj are subject to perturbations, where

1

2

3

Fig. 1. Illustrating the proposed work for matching articu-
lated shapes in [6]. The pair 1 of local configurations locate at
joints, whose deformation cannot be estimated by affine trans-
form (with the distance measure γ a high value of 0.9603).
The rigid transforms of pairs 2 and 3 can be approximated by
affine, whose γ are 0.1626 and 0.4233, respectively.

the perturbations of configuration matrices are caused by the
perturbations of contour points. Assume that Xi and Yj are
perturbed to ΔXi and ΔYj respectively, and

‖ΔXi‖2
‖Xi‖2 ≤ εX ,

‖ΔYj‖2
‖Yj‖2 ≤ εY , (6)

then the following theorem reveals the perturbation bound for
principal angles.
Theorem 1 (Bjorck and Golub [15]). Let the perturbations of
Xi and Yj be given in (6), then the perturbations of principal
angles are bounded by

|Δθk| ≤ gmax [κ(Xi)εX + κ(Yj)εY ] +O(δ2), (7)

where k = 1, 2, and

gmax =

√
sin2 θmax + cos2 θmin ≤

√
2, (8)

κ(Xi) and κ(Yj) are respectively the condition numbers of
the matricesXi and Yj , θmax and θmin denote respectively the
maximal and minimal principal angles between the column
spaces of Xi and Yj , and δ = κ(Xi)εX + κ(Yj)εY .

A conclusion deduced from this theorem is that if both
κ(Xi) and κ(Yj) are small, then the principal angles θk are
well determined. Next we derive a perturbation bound for the
measure γ based on the principal angles.
Corollary 1. For contour matching between 2-dimensional
images, the perturbation Δγ of the measure γ defined in
Eq. (3) is bounded by

|Δγ| ≤ 2
√
2 [κ(Xi)εX + κ(Yj)εY ] +O(δ2), (9)

where κ(Xi), κ(Yj) and δ are defined in the Theorem 1.
We omit the simple proof here due to page limitation. This

corollary indicates that the measure is also well determined
under the condition that both the matrices Xi and Yj are with
small condition number. A contour configuration of straight
line has a very large condition number (in theory it is infinity),
but a local contour configuration has a much smaller condition
number if it is far from a straight line; such a configuration
would be better for more robust matching. This motivates us
to use the condition number to select better contour points, as
given in the next section.
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4. MATCHING ISSUES

Here we discuss some issues in contour matching arose from
the proposed descriptor and measure. First, following Sec-
tion 3 we deduce an approach to improve robustness using
condition numbers. We use condition numbers as criteria to
select subsets of contour points

C′

X = {xi : κ(Xi) < λ}, C′

Y = {yi : κ(Yj) < λ}, (10)

for matching, where λ is a given threshold to condition num-
bers (we set λ ≤ 5.0). Eq. (10) states that points with smaller
condition numbers are left as stable points. Such a selection
is theoretically reasonable, and will improve algorithm’s ro-
bustness to perturbations in terms of the previous analysis.

After the above step we can perform matching of contour
points. The proposed descriptor with measure is suitable to
many contour matchers. We mainly use dynamical program-
ming (DP) and the Hugariam matching [5] in experiments,
which will show that the proposed obtains better performance
than many others under different matchers.

There is a point reverse-order problem due to sampling
of contours. Eq. (1) implicitly assumes that the k-th point
(row) in X̆i corresponds to the k-th point (row) in Y̆j ; this
is false if corresponding objects in two images are shown as
reflection (see the horse images in Fig. 4) but with same sam-
pling direction (e.g., both clock-wise). In this case the con-
tours are corresponded in reversed order, and Eq. (1) should
be Y̆j = JX̆iA with J the reverse-identity matrix. To tak-
ing into account this effect, we apply a simple approach by
matching contours twice in the same and reversed order re-
spectively, then choose the one with larger number of corre-
spondences as the better.

5. EXPERIMENTAL RESULTS

In this section we test accuracy and robustness of the pro-
posed descriptor with measure using synthetic and real-world
data. For fairly comparisons, we use different combinations
of descriptors and matchers. The descriptors we compared in-
clude the proposed OCM (formed by n = 25 points), the SC
and the IDSC; the matchers are the DP, the Hungarian and a
simple nearest-neighbor (NN) matching method.

Fig. 2 shows part of the synthetic data used in experi-
ments, where contour matchings are between the first column
and one of the rest columns. The first experiment is mainly
for global affine transformations like anisotropic scaling. The
left of Fig. 3 shows the matching results against various scal-
ing ratios, depicting that the proposed descriptor results in the
highest matching score under different matchers. Next we
compare the algorithms’ robustness to noise. The middle of
Fig. 3 depicts the matching accuracy against noise variances,
showing the good robustness of the proposed OCM with mea-
sure. We also test the computational loads of different algo-
rithms. The result in the right of Fig. 3 indicates that for the

Fig. 2. Part of synthetic data used for testing. The contours in
first column is the original shapes obtained from the MPEG-
7 database. Other columns are transformed from the first by
affine or noise.

Descriptor + Matcher Top 1 Top 2 Top 3 Top 4
SC + DP 20/40 10/40 11/40 5/40

IDSC + DP [6] 40/40 34/40 35/40 27/40
SD + DP [10] 39/40 39/40 37/40 21/40
OCM + DP 40/40 39/40 39/40 30/40

SC + Hungarian [5] 18/40 7/40 8/40 5/40
IDSC + Hungarian 40/40 33/40 30/40 27/40
SD + Hungarian 39/40 37/40 33/40 20/40

OCM + Hungarian 40/40 40/40 37/40 26/40

Table 1. Retrieval results for the articulation database in [6].

matchers of the DP and the NN, the algorithms using the SC
and IDSC are about two to three times faster than those us-
ing the proposed OCM. But it is interesting that the algorithm
using the OCM followed by the Hungarian matcher is faster
than those using the SC and the IDSC.

As proposed, our descriptor with measure is suitable for
articulated shape matching. We use the articulation shape
data in [6] to test the descriptors of SC, IDSC, SD [10] and
OCM combined with the matchers of DP and Hungarian. The
matching results are summarized as the numbers of the 1st,
2nd, 3rd and 4th most similar matches coming from the cor-
rect object, as shown in Table 1. The proposed OCM obtains
better matching accuracy.

Finally we use real-world images for testing. Contours
in the images are extracted by the GrabCut algorithm [16],
with perturbations in contour points. We use the proposed
OCM with the DP matcher for experiments. Fig. 4 shows the
matching performance for articulated and deformable shapes,
where points without correspondences are mainly those with
higher condition numbers and are removed by the scheme in
Section 4. The DP matcher also has some capability to reject
matching outliers [6], but its effect is minor.

6. CONCLUSION

The proposed local contour descriptor with distance mea-
sure from Grassmann manifold is theoretically invariant to
affine transformations and can well approximate articulated
and other nonlinear shape deformations. Condition numbers
of contour configuration matrices are key for robustness;
removing those with high condition numbers can improve
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Fig. 3. Experimental results for comparisons of descriptors. Left: Comparison under different degrees of anisotropic scaling.
Middle: Comparison under different noise levels. Right: Comparison of running times.

Fig. 4. Contour matching for real-world articulated images
using the proposed method. Top: Jet Li’s movie frames. Bot-
tom: Horse images searched from the Web.

robustness for contour matching under the proposed descrip-
tor and measure. A drawback is that the computational load
is relative large; using a faster estimation of the distance
measure will be studied further.
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