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ABSTRACT

This paper addresses the problem of detection salient regions

in images by exploiting the redundancy in image patches.

We assume that redundant patches are more likely to be

sparsely represented by other patches in the image while

salient patches are not. Such sparse likelihood can be mea-

sured via L1-minimization by finding the sparse represen-

tation of an image patch based on a dictionary constructed

using all other patches from the input image. We show that

this approach leads to a robust saliency algorithm and the

evaluation based on a database of 1000 images demonstrates

that our algorithm achieves significant improvement over

existing methods.

Index Terms— sparse representation, saliency, L1-

minimization

1. INTRODUCTION

Saliency detection involves finding regions in an image that

capture the attention of the human visual system. It is useful

in applications such as object recognition and image retar-

geting. Since it is well-known that V1 primary visual cor-

tex can be efficiently represented by a sparse code based on

an over-complete dictionary, sparse representation has been

exploited for saliency detection. Such sparse representation

is obtained from Independent Component Analysis (ICA) in

[1] and [2]. Sun [1] proposed a saliency algorithm based on

the difference-to-average approach using sparse representa-

tion learned by ICA for each image patch. Using a trained

dictionary via ICA as the features and the sparse coding of

an image patch as the response to such bases, Hou [2] mea-

sured saliency value based on the amount of entropy an im-

age patch introduced to the system. The sparse representa-

tion found in these methods is often not very sparse and will

not work when the dictionary size becomes large and con-

tains more redundancy, in which case the problem of finding

sparse representation becomes NP-hard. Luckily, recent ad-

vance in compressed sensing have provided robust tools such

as [3] to tackle the problem. Applying these tools, commonly

known as the L1-minimization approach has resulted in many

successful works in a wide range of applications [4]. The

most recent application of L1-minimization for saliency de-

tection is the algorithm proposed by Li [5], in which saliency

value can is measured by the length of the sparse coding of a

center patch using the surrounding as a dictionary. However,

because the coding length of a image patch may vary depend-

ing on the rank of the low-dimensional subspace it lies in re-

gardless of whether it is salient or not, this measured saliency

value may not be stable.

In this paper we develop a statistical approach to L1-

minimization in the sparse coding framework for robust de-

tection of salient regions. By assuming redundant image

patches are more likely to have sparse representation based

on a dictionary constructed by other patches in the image, we

show how a L1-minimization-based framework can naturally

lead to a robust algorithm which outperforms other existing

methods.

2. SALIENCY MODEL

2.1. L1-minimization review

Given a signal y ∈ R
n which can be sparsely represented by

some over-complete dictionary D ∈ R
n×M ,M > n which

contains M atoms {di}Mi=1. Suppose y can be expressed as a

linear combination of dictionary atoms i.e. y =
∑M

i=1 diαi,

αi ∈ R. The coefficient α = [α1, α2, . . . , αM ]T can be found

by solving the system of equations Dα = y. Since D is

over-complete, this system is under-determined hence there

are infinite solutions. One might be interested in only the

sparsest the solution which can be obtained by solving a L1-

minimization problem given by:

(P1) : α̂ = argmin
α

||Dα− y||2 + λ||α||1 (1)

where λ is a parameter that controls the trade-off between re-

construction error and sparsity. This problem has drawn much

attention recently and can be solved efficiently by linear pro-

gramming methods such as [3].As shown later, one may learn

very interesting information about natural image patches us-

ing L1-minimization.
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2.2. L1 approximation with non-negativity constraint for
natural image patches

Let S = {yi ∈ R
n, i = 1 . . . N} be a collection of natural im-

age signals sampled from an input image simply by stacking

pixels of image patches of size
√
n × √

n in a lexicographic

manner and suppose they are normalized to unit norm. We

observe that a set of signals obtained from similar patches

in this manner are highly correlated. For instance, in figure 1

similar blue and brown patches having varying brightness and

pattern have an astonishingly high minimum dot product with

their corresponding normalized mean - 0.9842 and 0.9945,

respectively 1. Suppose all signals collected from the input

Fig. 1. Left: original image. Top right: patches sampled from

the sky region with minimum dot product of 0.9842 to their

normalized mean. Down right: patches sampled from the

grass region with minimum dot product of 9.9945 to their nor-

malized mean. The minimum dot product between all patches

sampled from the image is 0.2354.

are stacked together to form a dictionary D ∈ R
n×N , which

is partitioned into M sub-matrices D = {Ci}Mi=1, Ci ∈
R

n×Ni , each containing Ni similar signals which exhibits

such degenerate structure. If Ci is redundant enough, a new

signal y drawn from Ci can be linearly represented by y =
Ciαi where αi ∈ R

Ni . Hence, D, y can be linearly expressed

by D i.e. y = Dα such that α = [0, . . . , αT
i , . . . , 0]

T , that is

all indices of α are zero except those associated with Ci. If

{Ci}Mi=1 are separated enough, the sparse solution α can be

found via L1-minimization approach. Based on the nature of

the natural image patches, we further require that α is non-

negative. The problem of interest hence turns to be

(P2) : α̂ = argmin
α

||Dα− y||2 + λ||α||1, α � 0.

(2)

This is reasonable since D � 0 and y � 0 and a contribu-

tion of negative patch to the target patch is hard to interpret

1This is to compare with observation done by [6] where highly correlated

face images of the same person have a minimum dot product of 0.723 with

their normalized mean.

2. Such sparse representation is sparser and more informa-

tive in comparison to representation learned by conventional

methods like ICA, where the coefficient is often widespread

across all bases. For instance, one may expect that with a high

probability a sparse solution α can be found exactly, i.e. non-

zero indices in α should only correspond to patches which are

most similar to y (figure 2).

Fig. 2. Result of L1-minimization indicates similarity be-

tween patches. Top row: The target patch (blue rectangle)

is approximated via L1-minimization using a dictionary D
formed by sampling other patches from the image in overlap-

ping manner. Black rectangles with varying transparency in-

dicate how much weight is given to a patch in order to approx-

imate the target patch. Bottom row: sparse coefficient learned

by non-negative L1-minimization using algorithm from [7].

2.3. Saliency measurement via statistical perspective

With the constraint of non-negative coefficient, natural im-

age signals are modeled in a way that signals from the same

’class’ span a tight and highly concentrated convex cone.

We have seen that such structure can be exploited by a L1-

minimization approach using a dictionary D formed by all

signals sampled from the input image. Since D contains all

information about the input image, given a new input signal

y, one may be interested to learn some statistics information

of y given D. For instance, if signals which are similar to

y appear to be redundant in D, it is likely that a sparse ap-

proximation of y can be found. On the other hand, if y is

rare and does not belong to any cone a sparse representation

is very hard to achieve (figure 3). Hence we propose to use

a statistical approach to measure how likely an input y can

be sparsely represented by D. It is known that minimizing

the equation given in problem (P1) corresponds to a MAP

inference in a probabilistic model with a Laplacian prior [8].

Let α have a Laplacian distribution, i.e p(α) = 1
2e

−|α|1 . The

2This assumption is also aligned with observation from Wright [6] that

even without explicit constraints, the coefficient tends to be non-negative.
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Fig. 3. Signals belong to the set spanned by ’bouquet’ C1 or

C2 are easy to be approximated with a sparse representation.

It is hard to get a sparse representation for signal like y which

does not belong to neither C1 or C2.

MAP estimate of α is:

α̂ = argmin
α

{− log p(α|y,D)} (3)

= argmin
α

{− log p(y|α,D)− log p(α|D)} (4)

Assuming α is independent of D, − log p(α|D) ∼ |α|1 + c
where c is some constant. With an appropriate Gaussian dis-

tribution model on p(y|α,D) solving equation (4) is equiva-

lent to the L1-minimization in the form of equation (1). The

error of approximation ||Dα − y||2 is then a good indicator

of how likely y can be sparsely represented by D.

Let p(i) = 1
2
√
π
e−

1
2 ||Diαi−yi||2 be the likelihood mea-

surement p(yi|αi,Di) of the event patch i belonging to the

sparse model with dictionary Di, then the rarity/saliency of

patch i can be measured by:

s(i) = 1− p̄(i) (5)

where p̄(i) is the normalized probability p(i) to the range 0-

1. Di is a dictionary formed by all signals in S except for yi.

To satisfy the non-negativity constraint, αi is the coefficient

learned by solving problem (P2).

2.4. Intensity integration

Using a L1-minimization approach will require that all input

signals have to be normalize to L2-norm unit length to avoid

the scaling problem where vectors with high magnitude tends

to be penalized [9]. By doing so we lose the brightness infor-

mation. Although some tolerance to the intensity is good, a

very dark and very bright patches should not be treated sim-

ilarly. Any modification made should maintain the convex

cone structure and should not affect the input signals in term

of magnitude. One solution is to map the intensity values

to a set of polar vectors with radius 1 and angle varies from

θmin to θmax. Let yi be the original signal, the new vector

y = [yT
i i

T
i ]

T can be formed by concatenating the original

vector yi with the intensity vector ii. The L2 norm of each

vector yi is then ||yi||2+ ||ii||2 i.e. no discrimination is made

in term of magnitude since for ∀i, ||ii||2 = 1. Furthermore, be-

cause the inner product between 2 vectors is then yT
i yj+iTi ij ,

by varying the range [θmin,θmax] one can control the discrim-

ination power of the intensity to the original input signals.

The important factor here is how large the range [θmin,θmax]
is, not θmin and θmax individually.

2.5. Adaptive dictionary

One common problem with saliency algorithms is that it is

often hard to identify large size objects. Many algorithms

based on surrounding contrast often highlight strong edges

and miss the interior of the object. The convex cone model we

propose can handle this situation very easily. In case of large

size object, a salient patch may have its surrounding similar to

itself, but yet in terms of a global context this patch is still very

distinctive. The presence of similar patches in the dictionary

results in a good approximation and hence low saliency value.

Excluding the surroundings in the dictionary is not a good

remedy since a patch which is different from the surrounding

is definitely salient. Therefore, one may want to remove only

similar patches which lie in the surrounding area of the target

patch. Based on the proposed model, one simple solution is to

eliminated any surrounding patch with an inner product with

the center patch higher than a value β from the dictionary.

3. EXPERIMENTS

We conduct the experiments with our proposed algorithm

using the database of 1000 color images with ground-truth

masked by human, provided by [10]. Patches of size 8x8x3

are sampled from the input image with overlapping of 4 pix-

els to form a vector of size 196. This vector is concatenated

with a 2D intensity vector carrying the average brightness of

the patch to form our input signals set. For a limited effect of

varying intensity, we choose the parameter [θminθmax] men-

tioned in section 2.4 to be [0, π
4 ]. For each signal, a dictionary

is constructed by discarding the target signal and similar sig-

nals in a surrounding area of 5 times the patch size, in which

the parameter β is set to 0.7. For each pair of signal and dic-

tionary, the problem in equation (2) is solved using algorithm

provided by [7] with parameter λ is set to 0.05. To evaluate

the performance, we use the Receiver Operating Characteris-

tic (ROC) method and compare our algorithms with ISS [5],

short-term ICA [1], ICL [2] and Itti’s [11]. Figure 4 shows

that our algorithm outperforms all state-of-the-art algorithms,

showing better consistency with the ground-truth. In terms of

average area under the curve, our algorithms also yields the

best result (table 1). Due to limited space we only show some

samples of our saliency in comparison with saliency map of

ISS (the next best algorithm in ROC evaluation). Unlike ISS,

our saliency map is not attracted to strong edges. Due to the
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Fig. 4. Average ROC curves of all methods on 1000 images

with human-masked ground-truth.

Ours short-term ICA Itti ISS ICL

0.9293 0.82375 0.78377 0.90167 0.8527

Table 1. Average area under the ROC curve of various meth-

ods

global excluding surrounding approach, our algorithm works

best with salient object with relatively large size (figure 5).

4. CONCLUSION

In this paper we propose an algorithm which leverage the

power of L1-minimization approach in saliency detection. Al-

though the framework is relatively simple and saliency calcu-

lation is straight-forward, it is very easy to extend and inte-

grate new information to improve the result.
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