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ABSTRACT

In this paper, we propose an object segmentation algo-
rithm driven by minimal user interactions. Compared to pre-
vious user-guided systems, our system can cut out the desired
object in a given image with only a single finger touch mini-
mizing user effort. The proposed model harnesses both edge
and region based local information in an adaptive manner as
well as geometric cues implied by the user-input to achieve
fast and robust segmentation in a level set framework. We
demonstrate the advantages of our method in terms of compu-
tational efficiency and accuracy comparing qualitatively and
quantitatively with graph cut based techniques.

Index Terms— object segmentation, level set methods

1. INTRODUCTION

Object segmentation within natural images, i.e. extracting
the foreground object (or object of interest) out of the clut-
tered background is an inherently ambiguous and challenging
problem. In the absence of high level knowledge, there can
be more than one interpretation of the foreground. Practical
systems incorporate prior information via user interaction and
low-level cues such as color and edges observed in the image.

A variety of interaction forms, ranging from roughly
marking the desired boundary [1] to loosely drawing scrib-
bles labeling the desired object and the background [2, 3], to
placing a bounding box around the desired object [4], have
been used. Regardless of the intervention modality, the goal
of any interactive image segmentation is to minimize the
amount of effort to cut out a desired object while accurately
selecting objects of interest.

The popular graph cut based approaches [2, 4] balance the
probability of pixels belonging to the foreground and back-
ground and the edge contrast. However, there is an inherent
bias of graph cut towards shorter paths, as the boundary term
sums over the boundary of the segmented regions. The level
set based methods, on the contrary, include a length-based
“ballooning” term which encourages a larger object segment.
One application of level set methods to image segmentation
has been the edge-based active contour model [5], which de-
pends on image gradient and therefore is a rather local ap-
proach sensitive to noise. More robust approaches that en-
code the region information has been proposed later in [6, 7].
Higher level prior knowledge such as geometric shape priors
has been introduced in [8].

The methods mentioned above inevitably experience in-
teraction difficulties when adopted in small size touch screen
applications, such as intelligent focus, white balance, and dy-
namic range functions in digital camera, digital camcorder or
smart phones. In terms of convenience, a single finger touch is
the most user-friendly interaction for object segmentation in
these applications. In this paper, we introduce a novel object
segmentation algorithm driven by minimum user interaction,
i.e. a single touch on the image. The core contribution of
this paper is an adaptive probabilistic edge-region-geometry
description of the segmentation problem. By leveraging the
flexibility of level set methods in energy minimization, the
proposed method enables desired segmentation with accurate
boundary placement and strong region connectivity while re-
quiring minimum user interaction.

2. LEVEL SET REVISITED

The active contour models implemented via level set methods
is a contour C in a domain Ω represented by the zero level set
of a higher level embedding function φ: Ω → �. Evolving
the contour C is achieved by evolving the level set function
φ. The evolution of the level set function φ is governed by
a partial differential equation (PDE). One can directly derive
the PDE from a certain energy functional E(φ) on the space
of level set functions and derive the Euler-Lagrange equation

which minimizes E(φ): ∂φ
∂t = −∂E(φ)

∂φ .

3. SEGMENTATION FRAMEWORK

In the level set paradigm, we propose a new energy functional
taking account of probabilistic edge map, color distribution of
foreground and background in an adaptive manner as well as
the geometric cue implied by user-input:

E(φ) = Ee(φ)+Ea(φ)+Eb(φ)+Eu(φ)+Es(φ)+Ed(φ) (1)

where Ee(φ) is the edge probability term, Ea(φ) is the bal-
looning term, Eb(φ) is the Bayes statistical error term based
on color distributions, Eu(φ) is the foreground consistency
term, Es(φ) is the geometric cue term, and Ed(φ) indicates
the distance regularization term to ensure the stable evolu-
tion of the level set function by penalizing the deviation of
the level set function from a signed distance function. Defin-
ing the distance regularization term is beyond the scope of
this paper, readers are referred to [9] for details. These terms
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Fig. 1. System overview. Dominant color extraction is per-
formed on the input image for calculating the edge probability
map (first row). Foreground/background color model is esti-
mated based on user input and the image border respectively
(second row). The energy function incorporates the various
energy terms. The evolution of the embedding function φ
is specified by the energy function (right column). The zero
level contour converges to the object boundary to generate the
segmentation (bottom right).

can be categorized as: edge based energy, statistical prior
energy, geometry energy and distance regularization energy.
Fig. 1 presents an overview of the proposed system, where the
dashed lines indicate these four energy categories. Each indi-
vidual energy term is detailed in the following subsections.

3.1. Edge Based Energy

Classical snakes and active contour models [5] typically use
an edge detector to halt the evolution of the curve on the
boundary of the desired object. The gradient based edge de-
tector inherently captures high frequency information but not
necessarily the real boundary of the desired object. Moreover,
it is also sensitive to noise. The edge-based active contour
model is thus not applicable to most natural images especially
texture rich or noisy data.

In order to describe the edge probability of color-texture
homogeneous region in natural image, we adopt a similar ap-
proach to JSEG [10], which calculates an edge indicator J
by observing the local distribution of color class labels with-
out estimating a specific model for a texture region. In our
proposed method, the color class labels are generated by ex-
tracting the dominant color (DC) modes and assigning each
pixel with the label of according DC. The value of J is large
near the boundaries of color-texture homogeneous region and
small in region interiors, and thus can serve as edge “proba-
bility” while suppressing noise in texture region.

We propose a non-parametric DC extraction algorithm
which considers both color distribution and color similarity
to better explore the inherent characteristics. In the algo-
rithm, colors in the CIE L*a*b* histogram are first clustered
via a watershed-like process. Considering the peaks in the
3D histogram as islets in a lake, some of them are merged as
the water level in the lake decreases, to make the algorithm

robust to the noise (roughness) in the histogram. Finally, each
cluster corresponding to a large enough proportion of pixels
is extracted as a DC. An example of the DC extraction result
is shown in the second image of the first row in Fig. 1.

Ee incorporates the edge indicator J and is defined simi-
larly as the geodesic model [5] Ee(φ) = μe

∫
Ω
gδ(φ)|∇φ|dx

where g = 1
1+cJ , μe is the coefficient, c is a constant, H is

the Heaviside function and δ is the Dirac delta function.
We define the ballooning term as Ea(φ) = μb

∫
Ω
gH(φ)dx,

which computes a weighted area of the region Ω+
φ � {x :

φ(x) > 0}. This energy is introduced to speed up the mo-
tion of the zero level contour in the evolution process when
the initial contour is not placed in the vicinity of the desired
object boundary. The ballooning of the zero level contour is
inhabited near the boundaries where J takes larger values.

3.2. Statistical Prior Energy

An optimal partition P(Ω) of the image plane Ω can be com-
puted by maximizing the a posterior probability p(P(Ω)|I)
for the given image I [11]. Applying Bayes’ rule, it can be
expressed as p(P(Ω)|I) ∝ p(I|P(Ω))p(P(Ω)). p(P(Ω)) al-
lows to introduce prior knowledge such as geometric priors
to cope with missing low-level information. Under the given
prior, optimal two-region partition is achieved by maximizing
p(I|P(Ω)) = p(I|Ω+)p(I|Ω−), where Ω+ and Ω− repre-
sent the regions inside and outside the contour respectively.
Maximization of the a posterior probability is equivalent to
minimizing its negative logarithm, we define Eb(φ) as

Eb(φ) = −μb[log p(I|Ω+) + log p(I|Ω−)]. (2)

We assume that the image I in each region is charac-
terized by the individual pixel values at different locations
x and the pixel values are i.i.d. Let φ(x) > 0 if x ∈ Ω+

and φ(x) < 0 if x ∈ Ω−. We reduce (2) to Eb(φ) =
−μb

∫
Ω
(H(φ) log p(I(x)|θ+)+(1−H(φ)) log p(I(x)|θ−))dx.

where θ+ and θ− represent the foreground and background
color model respectively and μb is the coefficient which is
specified in the implementation subsection.

The foreground and background color model are repre-
sented by Gaussian Mixture Model (GMM) learned from
observations of pixels; specifically the pixels in the user-
specified area are assumed to be foreground and the border of
the image is assumed to be the background.

The user-specified area is usually a part of the desired ob-
ject, and thus the foreground color model has higher confi-
dence than the background color model, especially when the
desired object intersects the border of the image. We propose
a foreground consistency term to enforce the minimization of
foreground statistical error as

Eu(φ) =
μu

∫
Ω
H(φ)(1− p(I(x)|θ+))dx∫

Ω
H(φ)dx

(3)

where μu is a coefficient specified in subsection 3.5.

3.3. Geometry Energy

People tend to select the geometrical centre when they are
indicating the object of interest. Although not a precise mea-
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surement, such a geometrical constraint provides a weak cue
for the contour evolution process. We propose a central sym-
metry term to reflect this geometrical constraint, by comput-
ing the spatial deviation of the geometrical centre of zero level
contour from the user-input point as

Es(φ) = μs|
∫
Ω
H(φ)(x− x)dx∫

Ω
H(φ)dx

| (4)

where x represents the user-input point. As the desired object
could have very complex shape, this term is regarded as a
relatively weak indication of the desired object’s geometry.

3.4. Adaptive Weighting

Minimizing the proposed energy functional (1) with constant
coefficients usually gives good segmentations. However,
when the foreground and background distribution is not dis-
tinct, the Bayes error term would be non-discriminative and
the contour evolution process would not converge to the de-
sired object boundaries. In this case, the weight of Bayes’
error term should be relatively small to increase the influ-
ence of other reliable terms. We expect it to be adaptively
tuned based on the color modeling error on a per image basis.
To this end, we estimate the misclassifying error in fore-
ground/background seeds based on the posterior probability

η =
1

|Ω+|
∑

x∈Ω+

p(I(x)|θ−) + 1

|Ω−|
∑

x∈Ω−
p(I(x)|θ+)

and define coefficient μb = max{μb(1 − η), 0}. When the
misclassifying error η is close to zero, the weight approaches
μb. When the color models are indistinct, μb approaches 0.

3.5. Gradient Descent Flow and Implementation

We use the standard gradient descent method to minimize the
energy functional (1)

∂φ

∂t
= −∂Ee(φ)

∂φ
− ∂Eb(φ)

∂φ
− ∂Eu(φ)

∂φ

−∂Es(φ)

∂φ
− ∂Ea(φ)

∂φ
− ∂Ed(φ)

∂φ

where the gradient flows are deducted as follows:

∂Ee(φ)

∂φ
= μeδ(φ)div(g

∇φ

|∇φ| )

∂Eb(φ)

∂φ
= μbδ(φ) log

p(I(x)|θ+)
p(I(x)|θ−)

∂Eu(φ)

∂φ
= μuδ(φ)[

(1− p(I(x)|θ+))
(
∫
Ω
H(φ)dx)2

−
∫
Ω
(1− p(I(x)|θ+))H(φ)dx

(
∫
Ω
H(φ)dx)2

]

∂Es(φ)

∂φ
= μsδ(φ)

|(x− x)− ∫
Ω
(x− x)H(φ)dx|

(
∫
Ω
H(φ)dx)2

∂Ea(φ)

∂φ
= μagδ(φ)

∂Ed(φ)

∂φ
= μddiv(

P ′
(|∇φ|)
|∇φ| ∇φ)

In the implementation, the Heaviside function H is ap-
proximated by a smooth function defined by

Hε(x) =

⎧⎨
⎩

1
2
(1 + x

ε
+ 1

π
sin(πx

ε
), |x| ≤ ε

1, x > ε
0, x < −ε.

(5)

and the Dirac delta function δ is approximated by

δε(x) =

{
1
2ε
(1 + cos(πx

ε
)), |x| ≤ ε

0, |x| > ε.
(6)

We adopt the narrow band method [12] to substantially re-
duce the computational cost of level set method by confining
the computation to a narrow band around the zero level set
contour. In our prototype, we use a mouse click and a fixed
brush size σ to simulate the user finger-touch. The embed-
ding function φ is initialized by extracting the contour of the
brush stroke. We empirically choose the parameters in the
formulation as follows: μe = 6, μb = 1, μu = 10, μs = 5,
μa = −3.8, μd = 0.04, σ = 24, ε = 1.5 and 200 iterations
of evolution.

4. RESULTS AND CONCLUSION

We have applied the proposed algorithm on a dataset con-
sisting of 100 images from BSDS300 [13], GrabCut dataset
[4] and the internet. We assess segmentation performance on
both the qualitative and quantitative basis.

Fig. 2 presents the qualitative comparison of the pro-
posed method with standard graph cut (middle) [2] and Grab-
Cut (right) [4]. Graph cut approach is adapted such that the
modeling of color distributions is exactly the same with the
proposed approach to make a fair comparison with one sin-
gle touch, i.e. the foreground is modeled from the pixels in
user-touch area while the background is modeled by taking
pixels from the border of the image. With significantly less
user input, our method gives satisfactory segmentation even
when the indistinct foreground and background color (first
row) or complex topology (second row) present. We can see
that graph cut approach fails to separate the objects exhibit-
ing similar color with the desired object, whilst our approach
fills the desired region by expanding from the interior of the
selected object outwards and explicitly considers the object
boundary and geometric property. GrabCut presents better
spatial constraints than graph cut, benefiting from the bound-
ing box while failed to exclude exotic regions (see the dif-
ferent levels of luminance underneath the tiger) which do not
appear outside the bounding box, and also it suffers from the
inherent short-cut problem (see the elephant’s legs and nose).

For objective evaluation, we adopt the Berkeley Seg-
mentation Benchmark [13] to evaluate segmentation against
manual ground-truth. This benchmark considers two as-
pects of segmentation performance. Precision measures the
fraction of true positives in the contours produced by a seg-
mentation algorithm. Recall indicates the fraction of ground
truth boundaries detected in the segmentation. The global
F-measure, defined as the harmonic mean of precision and
recall, provides a useful summary score for the segmentation
algorithm [13]. Our proposed method receives a F-measure
of 0.765 which outperforms the adapted graph cut (F-measure
0.538) and GrabCut (F-measure 0.697).
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Fig. 2. Comparison of proposed method (left) with graph cut
(middle) and GrabCut (right). The contour of segmented ob-
ject is shown in green.

Fig. 3 presents some subjective qualitative segmentation
results 1. The first row shows the results on highly-textured
images. The edge probability map enables the contour evo-
lution over color-texture homogeneous regions without being
stopped at local minimum. The second row shows the seg-
mentation results of images with indistinct foreground and
background colors. In this case, the color modeling error
is large which adaptively results in a small weight on color
based term Eb. On the other hand, the foreground consistency
term Eu enforces the region inside the zero level contour to be
coherent in the sense of color distribution regardless the back-
ground color distribution. Such a constraint significantly im-
poses the stability of the contour evolution process in the case
of indistinct color distributions. The third row gives some
segmentation results to deal with objects with complex shape.
By leveraging the strength of the implicit contour representa-
tion in level set methods, our system is robust in coping with
complex topologies without exhibiting short-cutting problem
which is common in graph-cut based systems. The system is
able to cope with weak boundaries and complex foreground
and background, to extract meaningful object in most cases.
The running time on a Core2 2.66 GHz PC is ∼ 0.4 second
per VGA image (640× 480).

In summary, we presented a single-touch object segmen-
tation system using level set methods. We demonstrated that
by exploring the edge probability of color-texture homoge-
neous region as well as the statistical prior inferred from user
input, our edge-region-geometry based model is able to ro-
bustly tackle the interactive object segmentation problem. By
leveraging the flexibility of level set methods in energy min-
imization, our system achieved promising result in various
natural images with complex scenes and objects. We believe
that single-touch image manipulation will become increas-
ingly important on emerging tablet form factor devices.
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