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ABSTRACT

We present a fast and generic algorithm, k-MLE, for learning
statistical mixture models using maximum likelihood estima-
tors. We prove theoretically that k-MLE is dually equivalent
to a Bregman k-means for the case of mixtures of exponen-
tial families (e.g., Gaussian mixture models). k-MLE is used
to initialize appropriately the expectation-maximization algo-
rithm. We also show experimentally that k-MLE outperforms
the EM technique with standard initialization by consider-
ing modeling color images using high-dimensional Gaussian
mixture models.

Index Terms— Gaussian mixtures, exponential families,
Bregman divergences, maximum likelihood estimation

1. INTRODUCTION AND BACKGROUND

Statistical mixture models are commonly used in signal
processing [1]. To sample from a finite parametric mix-
ture model with mixture density p(x|w1, θ1, ..., wk, θk) =∑k

i=1 wip(x|θi) (with ∀i, wi > 0 and
∑k

i=1 wi = 1), we
first draw at random the component i from which the sample
emanates (using a k-nomial distribution based on the weights
wi’s [1]), and then sample the observation from the cho-
sen component distribution p(x|θi). For example, Gaussian
mixture models (GMMs) have component parameters θi =
(μi,Σi), the means and symmetric covariance matrices. Let
D denote the parameter dimension (D = d+ d(d+1)

2 = d(d+3)
2

for Gaussian distributions). The mixture model is thus defined
by c = (k− 1) + kD = k(D+1)− 1 parameters. Let Θ de-
note the set of mixture parameters w1, θ1, ..., wk−1, θk−1, θk

(with wk = 1−∑k−1
i=1 wi).

In practice, given a set X of n independently and identi-
cally distributed (iid.) observations x1, ..., xn drawn from a
statistical mixture model, one needs to estimate all the mix-
ture parameters Θ. The major obstacle is that we are missing
the component labels zi’s from which the xi’s have been sam-
pled from. The maximum likelihood estimator (MLE) infers
the parameters by maximizing the complete likelihood func-
tion (or equivalently its log-likelihood function) that measures
the fitting quality of a mixture model given the prescribed ob-
servations:
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L(x1, ..., xn|Θ) =

n∏

i=1

p(xi|Θ) =

n∏

i=1

k∏

j=1

pδj(zi)(xi|θj),

where δj(zi) is the indicator function returning 1 if and only
if xi has been sampled from the j-th component (ie., zi = j),
and 0 otherwise. Since there are kn possible labels for the n

observations, it is not tractable to globally optimize the likeli-
hood function with the missing hidden variables zi’s. To over-
come this optimization, one traditionally uses the expectation-
maximization scheme [1] (EM). EM is a soft clustering tech-
nique [2] which locally converges to a local maximum of the
log-likelihood function:

l(x1, ..., xn|Θ) =

n∑

i=1

k∑

j=1

δj(zi) log p(xi|θj). (1)

The expectation-maximization algorithm proceeds after ini-
tialization iteratively as follows:

Expectation (E). Compute the n×k weight membershipma-
trix W = [wij ] using Bayes’ rule [1]:

wij = Pr(z = j|xi,Θ) =
wjp(xi|θj)∑

k
j=1

wjp(xi|θj)
.

Maximization (M). Update the mixture parameters:
wj =

1
n

∑n
i=1 wij , and

θj = argmax
∑n

i=1 log p(xi|θ)p(j|xi).

In case of GMMs, the M -step [1] becomes μj =
∑

n
i=1

wijxi∑
n
i=1

wij
and Σj =

∑
n
i=1

wij(xi−μj)(xi−μj)
T

∑
n
i=1

wij
. EM is mono-

tonically increasing the log-likelihood function and is guar-
anteed to converge to a local optimum [1]. In practice, one
needs to stop EM when the log-likelihood improvement be-
comes smaller than a prescribed threshold (otherwise EM it-
erates forever). Since EM is locally converging, we usually
run EM with different initial configurations to track the best
results. See Zhang et al. [3] for a recent efficient pruning tech-
nique to accelerate the multiple restart EM. The complexity
of learning the best likelihood GMM has been recently ad-
dressed in a series of papers (see [4]). In this work, we pro-
pose a fast method to learn a mixture model, or to initialize
purposely EM.

869978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



The paper is organized as follows: Section 2 describes the
k-MLE algorithm. Section 3 refines the algorithm for mix-
tures of exponential families (including GMMs), and rein-
terpret it as a particular Bregman clustering [5]. Section 4
reports on the experimental performance of k-MLE and dis-
cusses on its initialization. Finally, Section 5 wraps up the
contribution.

2. K-MAXIMUM LIKELIHOOD ESTIMATION

Although EM is widely used to estimate mixture models [1],
it is counter-intuitive from the modeling point of view to deal
with soft memberships for the latent variables zi’s. Soft clus-
tering is rather a mathematical convenience for the EM opti-
mization [1] to improve the likelihood function. We prefer to
stick to the sampling hard membership property of observa-
tions, and propose the following iterative algorithm: k-MLE.

Initialize. Initialize the mixture components θi’s distinc-
tively (ie., ∀i, j ∈ {1, ..., k}, j �= i, θi �= θj).

Iterate until convergence.
Assign. Assign observations xi to their most likely
component (hard membership) using the current pa-
rameter estimates (and without considering the mixture
weights). This yields a partition of x1, ..., xn into k

clusters: X = �k
i=1Ci.

Re-estimate. For each cluster, re-estimate the compo-
nent parameters using maximum likelihood estimators:
∀i ∈ {1, ..., k}, θi = argmaxθ l(Ci, θ).

Finalize. Set wi =
|Ci|
n

to the proportion of observations be-
longing to the i-th cluster component Ci.

The next section considers the case of mixtures of expo-
nential families that includes common statistical models: eg.,
GMMs, Rayleigh mixture models (RMMs for ultrasound im-
agery), Beta/Dirichlet mixtures, etc.

3. K-MLE: EXPONENTIAL FAMILY CASE

3.1. Maximum likelihood estimation

We recall the closed-form formula [6] of the MLE when
dealing with exponential families, and introduce the Leg-
endre duality. Let x1, ..., xn be n iid. sample from an
exponential family distribution [5, 6] X ∼ pF (x; θ) =
exp(〈t(x), θ〉 − F (θ) + k(x)), where 〈x, y〉 denotes the in-
ner product, t(x) denotes the sufficient statistic, θ the natural
parameter, k(x) the auxiliary carrier measure and F the log-
normalizer [6, 5]. Exponential families are log-linear mod-
els since log pF (x; θ) = 〈t(x), θ〉 − F (θ) + k(x). For ex-
ample, the multivariate Gaussians density [6] p(x;μ,Σ) =

1

(2π)
d
2

√
|Σ|

exp(− 1
2 (x − μ)TΣ−1(x − μ)) canonically de-

composes as t(x) = (x,−xxT ), k(x) = 0, F (θ,Θ) =
1
4θ

TΘ−1θ − 1
2 log |Θ|+ d

2 log π, see [6].
The log-likelihood function is ln(x1, ..., xn; θ) =∑n

i=1(〈t(xi), θ〉 − F (θ) + k(xi)). Removing all the k(xi)
′s

terms independent of θ, maximizing the log-likelihood func-
tion wrt. θ amounts to maximize

∑n
i=1(〈t(xi), θ〉 − F (θ). It

follows that

∇F (θ̂) =
1

n

n∑

i=1

t(xi). (2)

The minimum is unique for exponential families since F

is convex (the Hessian ∇2F is positive definite). For Gaus-
sians, we have ∇F (θ) = (μ,−(Σ+μμT )) [6]. It follows that
μ̂ = 1

n

∑n
i=1 xi and Σ̂ = 1

n

∑n
i=1 xix

T
i − μ̂μ̂T . (Note that

in this case, the MLE is biased [1]. The unbiased covariance
matrix is 1

n−1

∑n
i=1 xix

T
i − μ̂μ̂T .)

Since F is convex, we can also prove the “closed-form”
of Eq. 2 using its Legendre conjugate F ∗: The Legendre
transformation is defined by F ∗(y) = maxθ〈y, θ〉 − F (θ).
The maximum is obtained for y − ∇F (θ) = 0, that is
θ = (∇F )−1(y). Thus we have F ∗(∇F (θ)) = 〈∇F (θ), θ〉−
F (θ). Let η = ∇F (θ) (ie., θ = (∇F )−1(η) = ∇F ∗(η)).
It follows that the log-likelihood maximization amounts to
maximize maxθ

∑n
i=1(〈t(xi), θ〉 − F (θ). We rewrite the

equation as maxθ
∑n

i=1 F
∗(η) + 〈t(xi) − η,∇F ∗(η)〉 −

F ∗(t(xi))+F ∗(t(xi)), and introduce the dual Bregman diver-
gence BF∗(x : y) = F ∗(x)−F ∗(y)− 〈x− y, (∇F ∗)(y)〉 to
have equivalentlymaxθ

∑n
i=1 −BF∗(t(xi) : η)+F ∗(t(xi)).

That is equivalent to minimize minθ
∑n

i=1 BF∗(t(xi) : η).
For Gaussian distributions, the convex conjugate of the log-
normalizer F is F ∗(η,H) = − 1

2 log(1 + ηTH−1η) −
1
2 log | − H | − d

2 log 2πe, see [6]. Thus maximizing
the log-likelihood is equivalent to minimizing the aver-
age Bregman divergence [5] for the dual convex conjugate
minθ

∑n
i=1 BF∗(t(xi) : ∇F (θ)). This right-sided minimiza-

tion is always independent of the generator [5, 7] and yields
∇F (θ̂) = 1

n

∑n
i=1 t(xi) = η̂ or θ̂ = ∇F ∗( 1

n

∑n
i=1 t(xi)).

3.2. k-MLE as Bregman k-means

Banerjee et al. [5] showed that there exists a bijection between
exponential families and Bregman divergences:

log pF (x; θ) = −BF∗(t(x) : η) + k(x) + F ∗(t(x))
with η = ∇F (θ) denoting the dual moment parameter. It
follows that k-MLE for computing a mixture of k exponen-
tial families with log-normalizer F on x1, ..., xn is equiva-
lent to a Bregman k-means [5] on the sufficient statistic set
y1 = t(x1), ..., yn = t(xn) for the dual convex conjugateF ∗.
Indeed, by removing all terms k(xi)’s and F ∗(t(xi))’s inde-
pendent of Θ, we can rewrite the k-MLE optimization of the

870



(a) (b) (c)

(d) (e) (f)

Fig. 1. Modeling a color image using a Gaussian mixture
model (GMM): (a) Baboon source image, (b) a 5D 32-GMM
modeling, (c) hard segmentation using the GMM, (d) sam-
pling the 5D GMM, (e) Mean colors (8×8 patches) for GMM
with patch size s = 8, (f) hard segmentation for s = 8 patch
size.

log-likelihood function of Eq. 1 as

max
Θ

n∑

i=1

k∑

j=1

δj(zi) log pF (xi|θj)

min
η

n∑

i=1

k∑

j=1

δj(zi)(BF∗(t(xi) : ηj)− k(xi)− F ∗(t(xi))

≡ min
η

n∑

i=1

k

min
j=1

BF∗(t(xi) : ηj)

This immediately gives a proof of the monotonous con-
vergence of k-MLE from the convergence of Bregman k-
means [5]. Note that it is already known that k-means [8]
can be interpreted as a hard version of the EM algorithm for
a mixture of spherical Gaussians [9]. We extend this inter-
pretation to a broader setting: k-MLE is dually equivalent to
a “sufficient” Bregman k-means. In small dimensions, we
can speed-up the assign step of k-MLE by using the van-
tage point tree proximity location data structure [10]. Note
that for the case Gaussian distributions, the component distri-
butions pF (x;μi,Σi) induce a partition of the space into an
anisotropic Voronoi diagram [11].

Although we have shown that k-MLE is theoretically
equivalent to a Bregman k-means on the sufficient statistic
data set Y = {yi = t(xi) | xi ∈ X} for the dual Legendre
conjugate function F ∗, it raises two problems in practice:

• First, the dimensionD of the sufficient statistic spaceY
maybe much higher than the dimension d of the original
space X. (For example, D = d(d+3)

2 = dimY for
Gaussians instead of d = dimX).

• Second, the Legendre convex conjugate F ∗ may
not be expressed in closed-form (eg., mixtures of
Beta/Dirichlet distributions).

Thus it is worth working on the primal space X using k-MLE
on X rather than the dual Bregman k-means on Y ∈ Y.

Banerjee et al. [5] showed that EM on exponential fami-
lies amount to a soft Bregman clustering problem. We fill the
gap by considering the hard membership clustering k-MLE
for estimating mixture models. We initialize the soft Bregman
clustering with k-MLE. Since both hard clustering k-MLE
and soft clustering EM monotonically converge, we compare
their efficiency for a standard initialization. Let us observe
that k-MLE always converges after a finite number of itera-
tions but EM requires to fix a prescribed stopping criterion as
it always keep improving the log-likelihood.

4. EXPERIMENTAL RESULTS

We consider modeling color images using GMMs [12]. For
each pixel pi of the image (Figure 1(a)), we associate a 5D
xyRGB point pi = (xi, yi, ri, gi, bi) by stacking the (x, y)
pixel coordinates with its red green and blue color attributes
(ri, gi, bi). A color image of widthw and height h is thus han-
dled as a corresponding set of n = w×h 5D points p1, ..., pn.
We then learn a 5D GMM with k = 32 components (Fig-
ure 1(b)).

We can segment the image by assigning to each pixel the
mean color of the component that gives the highest probabil-
ity (Figure 1(c)). We can also use the generative statistical
mixture model to sample an “observation image” by draw-
ing xyRGB points from the 5D GMM (Figure 1(d)). We ob-
serve that in the sample image, we loose high-frequencies
(edges) (see Figure 1(d)). We build up a Laplacian image
pyramid [13] and consider the smallest resolution Gaussian
image that has been high-frequency band-passed filtered out.
We may also consider at each pixel position of the color im-
age, a patch of side length s instead of a single color pixel. In
that case, we transform the source image into a point set in di-
mension d = 2+ 3s2 by stacking the (x, y) pixel coordinates
with the color information of the patch. Figure 1(f) displays
the mean colors μi for a 32-GMM with patch size 8× 8. Al-
though k-MLE is used to better initialize EM, we compared
experimentally hard k-MLE and soft EM on a benchmark set
of color images using the same initialization parameters. We
initialized the GMM by performing kmeans++ [14] and for
each cluster retrieving the centroid μi and covariance matrix
Σi. Figure 2 shows that k-MLE (hard membership) outper-
forms EM (soft membership), and that both algorithms are
monotonically converging as predicted by the theory.

Since k-MLE amounts to an equivalent Bregman k-means
for the dual log-normalizer on the space of sufficient statistics,
we can further use bregkmeans++ [15] to initialize accord-
ingly the distribution parameters. Let k-MLE++ be that initial-
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Fig. 2. Log-likelihood performance for k-MLE and expec-
tation maximization (EM) on test images (baboon, lena,
panda, peppers) using the same kmeans++ initializa-
tion. k-MLE (dashed curves) performs better than EM (plain
curves).

ization in the primal space of observations. This probabilis-
tic initialization guarantees a good likelihood initialization
wrt. the optimal likelihood [15]. This works well for singly-
parameter exponential families (order 1), but face a degen-
erate situation otherwise. For example, for multivariate nor-
mals, for a chosen point y, we have η = y yielding a degener-
ate MLE parameter equation: (x, xTx) = y = (μ,Σ− μTμ)
yielding Σ = 0, a non positive definite matrix. In general, we
overcome this boundary value issue by fixing the D − 1 val-
ues to an arbitrary domain-valid value. (For Gaussians, say
μ = x and Σ = I the identity matrix, and k-MLE++ amount
to the regular k-means++.)

5. CONCLUSION

We described an efficient generic algorithm k-MLE for learn-
ing iteratively statistical mixture models. k-MLE can be used
to purposely initialize the expectation-maximization tech-
nique. Although we proved its theoretical equivalence with
a dual Bregman k-means [5] for the case of exponential fam-
ilies, it is rather practical to implement the primal k-MLE be-
cause it keeps the original low-dimensional observation space
and do not require to explicitly manipulate a Legendre conju-
gate function that may not be in closed-form (e.g., mixture of
Dirichlet distributions [1]).
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