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ABSTRACT

Hierarchical region-based image representations are versatile tools
for segmentation, filtering, object detection, etc. The evaluation of
their spatial accuracy has been usually performed assessing the final
result of an algorithm based on this representation. Given its wide
applicability, however, a direct supervised assessment, independent
of any application, would be desirable and fair.

A brute-force assessment of all the partitions represented in the
hierarchical structure would be a correct approach, but as we prove
formally, it is computationally unfeasible. This paper presents an
efficient algorithm to find the upper-bound performance of the rep-
resentation and we show that the previous approximations in the lit-
erature can fail at finding this bound.

Index Terms— Image segmentation, region-based hierarchy,
binary partition tree, supervised assessment

1. INTRODUCTION

Region-based hierarchical image representations have proven its ap-
plicability in many fields such as segmentation, filtering, information
retrieval [1]; object detection [2, 3, 4], contour detection [5, 6], etc.

The validity of these approaches is usually proven via a super-
vised task-based or system-level assessment [7], that is, compar-
ing the final result against a manually-annotated database known as
ground truth, as done in [2]. This way, as contour detectors, the
image representations can be assessed by analyzing the quality of
the boundary maps obtained in the precision-recall environment pre-
sented in [8] on the BSDS300 database [9]. In an object detection
environment, the quality of the representation can be analyzed by
comparing the object masks obtained against an object ground-truth
database as the DCU dataset [4].

As a generic image representation, however, it would be desir-
able to assess the representations intrinsically, independently of the
final application the user will give to the representation. A hierar-
chical region-based image representation is a structured set of image
partitions from the most detailed ones (more regions) to the coars-
est ones (less regions). This way, an intuitive approach to assess the
representation directly could be to compare all the partitions rep-
resented in the hierarchy and to assess their quality with respect to
their number of regions.

Any hierarchy of nested regions based on a set of non-overlapping
regions can be represented by a binary tree of regions, which in [1]
is referred to as Binary Partition Tree (BPT), so although this work
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is focused on this type of trees, the results are generalizable to any
hierarchy of regions.

Starting from a partition, BPT is constructed by iteratively merg-
ing the pairs of regions that are more similar according to a given
measure. Each merging produces a new partition with exactly one
region less than the previous one until only one region (the single
image) remains. Figure 1 illustrates this process on a simple image
partition.
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Fig. 1. BPT creation process: From left to right, the two most-similar
neighboring regions are merged at each step. Below, the BPT repre-
sentation depicted by a tree, where the region formed from the merg-
ing of two segments is represented as the parent of the two respective
nodes

The set of mergings that a BPT produces is known as merging
sequence and the set of partitions that are iteratively formed in the
process is known as merging-sequence partition set. In the example
of Figure 1, the merging sequence is {R1↔R2, R3↔R4, R5↔
R6}, and the merging-sequence partition set is formed by the four
represented partitions.

We first prove (Section 2) that the number of image partitions
represented in a BPT can grow exponentially with the number of
leaves of the tree (initial number of regions, N ), thus it is unfeasible
to try to assess the hierarchy by evaluating all the partitions exhaus-
tively by brute force.

An accepted approach to overcome this type of limitation is to
analyze the upper-bound performance [10] of the representation,
that is, to assess the partition that best matches the ground truth
scanning all possible number of regions. The approach followed
in [11, 12] in this direction consists in assessing the N partitions in
the merging sequence, expecting them to be the best representations.
There is no guarantee, however, that this set of partitions is indeed
the best representation in the hierarchy for each number of regions.
For instance, following this strategy, in the example of Figure 1, the
partition formed by R1, R2, and R6 would never be analyzed. Ex-
amples of looking for partitions outside the merging sequence can
be found in [1] and [2].
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The main contribution of this paper is to present a technique
to efficiently find the partition coded in the hierarchy that best rep-
resents the ground truth for any number of regions, as presented in
Section 3. The rationale behind this technique is to take advantage of
the tree structure to decompose the assessment recursively, provided
that the assessment measure fulfills a locality constraint.

Section 4 presents the experiments to prove that the previous
techniques are not capable of always finding the upper-bound per-
formance and that the differences in the resulting assessment are no-
ticeable, while the proposed technique finds the upper-bound perfor-
mance efficiently.

Finally, we draw the conclusions and sketch the future lines of
work in Section 5.

2. UNFEASIBILITY OF A BRUTE-FORCE ASSESSMENT

Let N be the number of leaves of a tree or, in image segmentation
terms, the number of regions of the original partition on which the
tree is built.

Following the definitions in [13], the depth of a node is the num-
ber of nodes from it to the root, both inclusive. The height of the
tree is the maximum depth of its leaves, and it is said to be height-
balanced (in short, balanced) when the depth of the leaves differ at
most by 1. This can be seen as the worst-case scenario in the study
of the quality of a hierarchy.

Lemma 1. The number of nodes of a binary tree with N leaves is
M = 2N − 1.

Proof. Let us imagine we mark the nodes of the tree by the following
procedure: starting from the N leaves marked, we mark any node
with two marked sons and un-mark its sons. We repeat the process
until only the root is marked. Each step of this process marks a new
region and reduces the number of nodes still to be marked of the tree
by one. Since originally there are N marked nodes, and at the end
of the process just one, the number of steps from the leaves to the
whole image is exactly N−1. Consequently, M = N + (N − 1) =
2N − 1.

Lemma 2. The maximum number of nodes at depth exactly d at the
tree is 2d−1.

Proof. By induction, for d = 1, there is only 1 = 20 root. If at level
d there are at most 2d−1 nodes, at level j = d + 1, since the tree is
binary, there will be at most 2d−1 · 2 = 2d = 2j−1.

Lemma 3. All the leaves of a binary tree have exactly the same
depth d if, and only if, d = log2 (N)+1, or, equivalently N = 2d−1.

Proof. Given that all the leaves have the same depth, each level will
be complete, so Lemma 2 applies. Being M the number of nodes in
the tree, counting them from the root:

M = 20 + 21 + 22 + · · ·+ 2d−1 = 2d − 1

Applying Lemma 1:

2N − 1 = 2d − 1 ⇒ d = log2 (2N) = log2 (N) + 1

Theorem 1. Let P be the set of all possible partitions that can be
extracted from a height-balanced BPT, and |P| its cardinality. Be-
ing N the number of regions in the original partition (leaves), then:
|P| ≥ 2N/2.
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Fig. 2. Recursive decomposition of a BPT. The vertical axis refers
to the height of the corresponding tree. When two height-balanced
subtrees of height i− 1 are merged, the resulting tree has height i

Proof. We will proof the result by induction on the height of the tree
h. For h = 2, N = 2, |P| = 2 ≥ 22/2 = 2.

Let us assume that the result is true for h = i − 1, i.e., for
N = 2i−2 (recall Lemma 3). A tree of height h = i can be seen as
the merging of the roots of two trees of height h = i−1, as depicted
in Figure 2.

Then we will have that each partition in the left tree can be com-
bined with any partition of the right tree forming a new partition.
Adding the new root, it follows that:

|Pi| = |Pi−1|2 + 1 ≥ |Pi−1|2

Applying the induction hypothesis:

|Pi| ≥ |Pi−1|2 ≥
(
2

2i−2

2

)2

= 2(2
i−2) = 2

2i−1

2

By induction it follows that:|P| ≥ 2N/2.

In other words, the number of partitions that can be extracted
from a balanced BPT grows exponentially with the number of re-
gions of the original partition. For a generic BPT the brute-force as-
sessment would therefore be unfeasible in the worst-case scenario.
To get a flavor of the dimensionality, for a balanced tree constructed
on only 64 regions, the number of different partitions that can be
extracted is higher than four thousand millions.

3. UPPER-BOUND PERFORMANCE ASSESSMENT

Intuitively, recalling Figure 2, the main idea behind our approach is
to compute the best representation of k regions at height i as combi-
nations of j and k−j regions on each subtree of height i−1. Starting
at height 1, only a representation with k = 1 regions is possible, and
then at each increase in height, only the best representations of the
subtrees have to be explored, avoiding all the suboptimal represen-
tations. Following, we describe the algorithm formally.

Definition 1. Given a partition P = {Rj}, and a ground truth
partition GT , an assessment measure m(P,GT ) is said to be local
when there exists another measure ml such that:

m(P,GT ) =
∑
j

ml(Rj ,GT )

Let t(Rj) be the height of the subtree rooted at node Rj . Let us
denote the regions of a tree as R1,..., RN , ..., R2N−1, numbered in
increasing order of t, i.e.:

1 = t(R1) = t(R2) = · · · = t(RN ) ≤ · · · ≤ t(R2N−1)

Note that, under this condition, R1, ..., RN are the leaves and R2N−1
is the root. Note also that, in the case of the BPT, the merging order
fulfills this requirement.

866



Definition 2. We define sik as the value of the addition of ml on the
best representation by means of exactly k regions from the subtree
below Ri.

Following this definition, our objective is to compute s2N−1
k , that

is, the upper-bound performance of the whole tree for k = 1 . . . N
regions. Formally, Algorithm 1 describes the procedure to find the
upper-bound performance of a tree with respect to a local measure
m, where il and ir are the indices of the left and right sons of the
node Ri, respectively; and t′(Ri) is the number of leaves in the sub-
tree below Ri, so we have that t′(Rj) = t′(Ril) + t′(Rir ).

Algorithm 1: Upper-bound tree assessment

for i = 1, . . . , 2N−1 do
si1 ←− ml(Ri,GT )
if i > N then

for k = 2, . . . , t′(Ril) + t′(Rir) do
sik ←− +∞

end
for p = 1, . . . , t′(Ril)−1 do

for q = 1, . . . , t′(Rir)−1 do
sip+q ←− min

{
sip+q, s

il
p + sirq

}
end

end
end

end

Note that we are assuming that the assessment measure is an er-
ror measure or a distance, in the sense that the lower the better, since
we compute the minimum of the measure in the leaves of each node.
We should change to the maximum if the measure is a similarity, i.e.,
the higher the measure, the better.

Lemma 4. The number of regions at height h in a balanced tree is
exactly N21−h.

Proof. At height 1 there are N leaves and, at each height increase,
the number of regions is divided by 2.

Theorem 2. Algorithm 1 time complexity is O
(
N(log2 N)2

)
.

Proof. The number of relevant sik updates in Algorithm 1 are:

T (N) = 2N + 1 +

2N−1∑
i=N+1

t′(Ril) · t′(Rir)

In the worst-case scenario, a height-balanced tree, the number of
leaves below each region at height h is exactly h, that is, t′(Ril) is
equal to the height of Ril. Let us rewrite the summation by levels of
height, that is, from h = 2 to log2 N + 1. The number of regions
exactly at height h is N21−h (Lemma 4), so the total number of
operations is:

T (N) = 2N + 1 +

log2 N+1∑
h=2

h · h ·N21−h ≤

≤ 2N + 1 +N

log2 N+1∑
h=2

h

= 3N+
1

2
(log2 N+1)(log2 N+2) = O

(
N(log2 N)2

)

That is, Algorithm 1 takes advantage of the hierarchical struc-
ture to find the upper-bound performance efficiently, which was not
feasible by a brute-force analysis.

4. EXPERIMENTS

As an assessment measure, we will use the asymmetric partition
distance dasym [14] (as done in [11, 12]), defined as:

dasym (P,GT ) =
∑
R∈P

max
R′∈GT

∣∣R ∩R′∣∣

This definition directly proves that the measure is local, since letting:

dlasym(Rj ,GT ) = max
R′∈GT

∣∣Rj ∩R′∣∣

we have that dasym(P,GT ) =
∑

j d
l
asym(Rj ,GT ), thus fulfilling

Definition 1.

As baseline, we will compare the values obtained by the upper-
bound assessment against only assessing the partitions of the merg-
ing sequence of a BPT, as done in [11, 12] and presented in Section 1.

The BPTs are built as in [11], starting at 300 regions (leaves).
The 500 images from the segmentation ground-truth database
BSDS500 [5] are segmented and evaluated using the merging se-
quence technique and the upper-bound performance assessment.

First, to illustrate how a typical result looks like, Figure 3 plots
the evolution of the error on the trees built on three example images.
As expected by definition, the quality obtained via the upper-bound
performance technique is always better than the merging sequence
analysis. Qualitatively, the evolution of the merging-sequence curve
is stepped, which shows that, at some points, although increasing the
number of regions, the technique is not capable of finding a better
representation.
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Fig. 3. Merging sequence versus upper-bound-performance error for
three example trees

To make the results statistically significant, Figure 4 shows the
mean of the error for the whole set of 500 images of BSDS500, com-
pared against the 2696 ground-truth partitions defined on these im-
ages. The differences between the strategies are indeed kept in mean,
thus proving that measuring the quality on the merging sequence
does not provide the upper-bound performance as expected.

To get a better quantitative idea of the relevance of the differ-
ences, Figure 5 plots the percentage increase of the error of the merg-
ing sequence analysis with respect to the upper-bound performance.
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Fig. 4. Merging sequence versus upper-bound-performance error
mean in BSDS500
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Fig. 5. Error increase percentage of merging sequence with respect
to upper-bound-performance error. Blue stars show the values for
the three example images of Figure 6

The error percentage increase is maximum at around 40 regions,
where it reaches 76%. This value is clearly significant and could
mislead the assessment performed when comparing different tech-
niques or tuning a segmentation algorithm.

The high variance observed in the error percentage increase
makes it even more crucial to use the upper-bound performance,
since it means that the merging sequence result is not consistent
between images, and therefore it cannot be considered as a bias that
does not affect the comparison of the results.

Finally, Figure 6 shows three examples of partitions from the
ground truth, the merging sequence, and the upper-bound perfor-
mance analysis. In it, we graphically corroborate that the differences
can indeed be significant. The error increase percentage for these
three examples is plotted in blue stars in Figure 5.

5. CONCLUSIONS

This paper presents a novel and efficient algorithm to find the upper-
bound performance of a hierarchical region-based image representa-
tion in a supervised environment. It takes advantage of the structure
of the hierarchies in form of a tree to avoid a brute-force evaluation
of all the partitions, which we prove to be unfeasible.

We prove that previous approaches were not capable of finding
the upper-bound performance, and that the differences can mislead
the result of the assessment.

Fig. 6. Three example partitions with 20, 30, and 40 regions, respec-
tively. First column: ground truth partition from BSDS500, second
column: partition obtained from the merging sequence, and third
column: partition reaching the upper-bound performance
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