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ABSTRACT

In this article, a complete original framework for unsupervised
statistical region-based active contour segmentation is proposed.
More precisely, the method is based on the maximization of alpha-
divergences between non-paramterically estimated probability den-
sity functions (PDFs) of the inner and outer regions defined by
the evolving curve. We define the variational context associated to
distance maximization in the particular case of alpha-divergences
and provide the complete derivation of the partial differential equa-
tion leading the segmentation. Results on synthetic data, corrupted
with a high level of Gaussian and Poisson noises, but also on clin-
ical X-ray images show that the proposed unsupervised method
improves standard approaches of that kind.

Index Terms— Image segmentation, active contours, distance
maximization, probability density function, alpha-divergences.

1. INTRODUCTION

Originally proposed in [1], the basic idea of active contour segmen-
tation is to iteratively evolve an initial curve towards the boundaries
of target objects. The evolution equation of the curve is generally de-
rived from a variational principle in which the energy functional is
optimized thanks to the combination of external forces, induced from
the image (intensity, texture...) and internal forces determined by the
geometry of the evolving curve (shape prior of the target object). In
the particular framework of statistical region-based active contour
segmentation, external forces involve optimization of distance (or
divergence) between probability density functions (PDFs) character-
izing the inner (Ωin) and the outer (Ωout) regions delimited by the
boundaries of the active curve. Depending on the formulation of the
problem, minimization or maximization, the segmentation process
completely differs: the minimization formulation leads to a super-
vised segmentation problem since the objective is to minimize the
distance between the current PDF of active curve inner (resp. outer)
region and an inner (resp. outer) reference PDF; the maximization
formulation does not require any reference since the objective is to
maximize at each iteration the distance between current inner (pin)
and outer (pout) PDFs.

Whatever the optimization formulation is, main key points of
statistical region-based active contour segmentation approaches are:
the distance used for comparing PDFs, and the way the different
PDFs are estimated (parametrically or not). Considering the min-
imization approach, standard proposed distances of the literature
are the χ2 distance, the Kullback-Leibler divergence (KL) or the
Hellinger distance [2, 3, 4, 5]. Recently, we have proposed [6]
to minimize alpha-divergence criterion with non-parametric estima-

tion of the PDFs using Parzen window technic [7]. We showed
that our criterion outperforms existing distance criteria. In the con-
text of maximization formulation, only few works have dealt with
these problems: In [8], pin and pout are parametrically estimated
and compared using a maximization of the Bhattacharaya distance
(which is directly linked to Hellinger distance), and in [5], maxi-
mization of the Kullback-Leibler divergence is considered between
parametrically estimated pin and pout PDFs. In this article, we pro-
pose to consider the maximization problem of the alpha-divergence
criterion between non-parametrically estimated PDFs (pin and pout)
of the inner and outer regions defined by the active curve in order to
extend our previous work [6] to unsupervised context.

The remaining of this paper is organized as follows: section 2
is focused on the theoretical part of this work: First the distance
maximization mathematical framework is remained and consider-
ing a non-parametric estimation of pin and pout, the complete orig-
inal calculations that lead to the corresponding partial differential
equation (PDE) are exposed. Second, the specific case of alpha-
divergences is considered. In section 3, evaluation of the method is
proposed. Segmentation results obtained on synthetic noisy images
are first compared with performances of standard distances. Finally
experimental results obtained with segmentation of X-ray images us-
ing alpha-divergence maximization are compared to the standard KL
divergence and Hellinger distance.

2. ALPHA-DIVERGENCE MAXIMIZATION BETWEEN
NON PARAMETRIC PDF FOR IMAGE SEGMENTATION

2.1. Derivation of the general PDE

As said in the previous section, the functional from which is derived
the PDE driving the active curve evolution is based on the optimiza-
tion of a distance criterion between the PDFs of the inner region pin
and the outer region pout delimited by the active curve. From the
maximization point of view, this distance is defined as follows:

D(pin‖pout,Ω) =

∫
�m

ϕ(pin, pout, λ) dλ , (1)

where ϕ is a cost function related to the maximized distance D
and Ω the image domain. pin and pout are normalized histograms
such as pi(λ) : �m → [0, 1] represents probability distribution of
pixel intensity λ in the image. In this article, m = 1 since we will
only consider grayscale images and PDFs are non-parametrically
estimated at each iteration of the segmentation process using Parzen
Window:

pi(λ) =
1

|Ωi|

∫
Ωi

gσ(I(x)− λ) dx, where i = {in, out}, (2)
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with gσ is the Gaussian kernel of standard deviation σ (see [4] for
optimal choice of σ) used in the Parzen window estimation, I(x) is
the intensity function of the segmented image at a given pixel x of
the image, Ωin is the region inside the active curve Γ and Ωout the
region outside.

Considering the maximization of Eq. (1), the corresponding gen-
eral PDE is usually deduced from the Euler Derivative of D given
by :

< D
′(Ω),V >= −

∫
∂Ω

v(x,Ω) < V · N > da(x), (3)

where ∂Ω is the boundary of the region Ω and da an area ele-
ment of Ω, with N the inner normal vector of the curve and v the
velocity of the curve.

In our case, Eq. (3) then becomes:

< D
′(Ω),V > = dD(pin‖pout,Ω,V) (4)

=

∫
�

dϕ(pin, pout, λ,V) dλ.

The problem is now then shifted to the calculation of the Euler
derivative of the ϕ function. To achieve this, let us introduce f the
function such as:

ϕ(pin, pout, λ) = ϕ
(G1,in

G2,in

,
G1,out

G2,out

, λ
)

= f(G1,in, G2,in, G1,out, G2,out, λ), (5)

with G1,i(λ,Ωi) =

∫
Ωi

gσ(I(x)− λ) dx

and G2,i(Ωi) =|Ωi| =

∫
Ωi

dx.
(6)

From Eq. (5) and Eq. (6), we can then deduce that:

dϕ(pin, pout, λ,V) = df(pin, pout, λ,V)

=
∑

i={in,out}

∂f

∂G1,i

dG1,i(λ,Ωi,V)

+
∑

i={in,out}

∂f

∂G2,i

dG2,i(Ωi,V).

Since the function gσ(I(x) − λ) does not depend on the region
Ωi, we have:

dG1,i(λ,Ωi,V) = −

∫
∂Ωi

gσ(I(x)− λ) < V · N > da(x),

dG2,i(Ωi,V) = −

∫
∂Ωi

< V · N > da(x),

and partial derivatives of f are given by:

∂f

∂G1,i

=
1

|Ωi|
∂kϕ(pin, pout, λ)

∂f

∂G2,i

= −
pi

|Ωi|
∂kϕ(pin, pout, λ),

where {i, k} = {{in, 1}, {out, 2}}.

where ∂1ϕ and ∂2ϕ are the derivatives of ϕ with respect to the first
(pin) and the second (pout) variables.

Merging all those intermediate calculations and noticing that by
convention, the curve Γ = ∂Ωin = −∂Ωout, the Euler derivative of
the maximized functional D becomes :

dD(pin‖pout,Ω,V) =

∫
Γ

( −1

|Ωin|
(A1 − C1) (7)

+
1

|Ωout|
(A2 − C2)

)
< V · N > da(x),

with Ak = ∂kϕ(pin, pout, λ) ∗ gσ(I(x))

Ck =

∫
�

∂kϕ(pin, pout, λ) pi dλ,

where {i, k} = {{in, 1}, {out, 2}}.

Finally, the PDE corresponding to the maximization of a dis-
tanceD between two non-parametrically estimated PDFs is obtained
thanks to the Gateaux derivative gradient flow:

∂Γ

∂t
=

[ 1

|Ωin|
(A1 − C1)−

1

|Ωout|
(A2 − C2)

]
N. (8)

2.2. Alpha-divergence distance

In [6], we introduced alpha-divergence measure [9, 10] as a dis-
tance criterion for statistical region-based active contour segmenta-
tion. More precisely, from a minimization perspective (supervised
approach), we showed the adaptability of this parameter to some
very different contexts of noise. In the case of grayscale images, the
energy functional Dα related to this particular divergence could be
defined using Eq. (1) with the cost function given by:

ϕα(pin, pout, λ) =
1

α(1− α)

(
αpin(λ) + (1− α)pout(λ)

− [pin(λ)]
α[pout(λ)]

1−α
)
,

(9)

where α ∈ �.
If a complete study about the mathematical properties of alpha-
divergences can be found in [11], let us highlight that for specific
values of α, some aforementioned standard distances can be con-

nected to alpha-divergences. For instance: D2(Ω) =
1

2
Dχ2(Ω),

D 1

2

(Ω) = 2DHellinger(Ω), DKL(Ω) = lim
α→1

Dα(Ω). This makes

alpha-divergence a generic distance estimation, with multiple tuning
possibilities via α parameter and as a consequence, a very flexible
measure.

In the context of maximization, in order to properly define the
corresponding PDE of Eq. (9) for unsupervised segmentation, we
calculate first and second derivatives of corresponding ϕα function
with respect to pin and pout :

∂1ϕα(pin, pout, λ) =
1

1− α

(
1−

[
pout

pin
(λ)

]1−α)

∂2ϕα(pin, pout, λ) =
1

α

(
1−

[ pin

pout
(λ)

]α)
,

(10)

which completely defines the iterative process of segmentation.
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3. EXPERIMENTS

In order to be able to segment images presenting more than one
target object, we propose to embed the alpha-divergence maximiza-
tion within the now usual level-set framework [12, 13]. In this
framework, considering the standard level-set embedding function
φ : �2 × �+ → � and preliminary calculations given by Eq. (8),
the following evolution PDE is obtained:

∂φ

∂t
=δφ

(
β∇ ·

(
∇φ

|∇φ|

)

− ξ(
1

|Ωin|
(A1 − C1) +

1

|Ωout|
(A2 − C2))

)
,

(11)

where A1,A2,C1 and C2 are taken from Eq. (8) and Eq. (10), β and
ξ positive weighting parameters and ∇ the gradient operator. The
first term of Eq. (11) consists in a regularization constrain on the to-
tal length of the final segmentation and second and third terms are re-
lated to the iterative maximization of the alpha-divergences between
pin and pout (see Eq. (8) for corresponding general PDE). Practi-
cally speaking, the implementation of Eq. (11) is achieved with a
semi-implicit version of the Additive Operator Splitting scheme first
introduced in [14] and successfully used in [15].

3.1. Segmentation of noisy synthetic images

In order to evaluate the performance of the proposed method based
on maximization of alpha-divergences, we first propose to achieve
the segmentation of synthetic images corrupted by various types of
noises (see Fig. 1 for illustation). Mainly, corrupting noises consid-
ered here are zero-mean Gaussian and Poisson ones: The Gaussian
noise is a standard one in the majority of acquisition systems, and
the Poisson distribution will model the corrupting process of X-Ray
imaging system that will be studied in next section. Moreover, in
order to highlight the benefit from the level-set implementation of
Eq. (11), the synthetic image presents two objects to segment. Fi-
nally, the initialization of the active curve is a set of little circles
regularly dispatched on the whole image which allows not to con-
sider a too specific initialization process (too close to the boundaries
of the objects to segment for example). Some results of segmenta-
tion are shown in Fig. 1. The first row shows results obtained with
the Gaussian noise and the second row with the Poisson distribution.
In both cases, we purposely chose to highly corrupt the original im-
age (PSNR = 10 dB) and to set the regularization parameter β of
Eq. (11) to 10 whereas the weigthing parameter for distance maxi-
mization is fixed to ξ = 0.01. As one can notice, regarding the value
of α parameter (restricted to [0 · ·1] in this study), the segmentation
results is very different: considering the Gaussian noise, best results
are obtained with non-standard values of α parameter like α = 0.4
(Fig. 1.a). Usual distances like Hellinger and KL do not lead to sat-
isfying segmentations: In the first case, the main object is not finally
well-segmented (Fig. 1.b) and in the second, the segmentation pro-
cess does not even really starts owing to unsuficient generated forces
in terms of magnitude by the alpha-divergence measure. This can
not be balanced by a more important regularization: In this case, the
active contour can not even stop to the boundaries of the two ob-
jects. For Poisson noise, same kinds of results are obtained: best
segmentation is achieved thanks to 0.3-divergence (which remains a
non-standard value), whereas Hellinger and KL do not lead to proper
segmentations (Fig. 1.e and 1.f).

(a) α = 0.4 (b) Hellinger (c) KL

(d) α = 0.3 (e) Hellinger (f) KL

Fig. 1. Some results of segmentation using distance maximization
between PDF of inner and outer regions of the synthetic peanut
corrupted by Gaussian (a, b, c) and Poisson (d, e, f) noises of
PSNR = 10 dB.

3.2. Segmentation of X-ray images

Fig. 2. In green, typ-
ical structures of the
bones related to os-
teoporosis pathology.
In red, classical seg-
mentation result using
a parametric Chan et
Vese like method.

X-Ray imaging remains of primary in-
terest for diagnosis and follow-up of
pathologies related to bones. More
precisely, segmentations of some bone
structures are required to quantify gold
standard parameters (as density, curva-
ture, spacement...) that lead clinicians
to a precise diagnosis and follow-up of
the considered pathology. Segmentation
of that kind of images is challenging for
two main reasons: First, these acquisi-
tions are corrupted by a strong Poisson
noise that makes its segmentation not al-
ways that easy with standard approaches
like Chan and Vese [13] one (which is
known to be unadapted to clinical image
analysis); Second, bones area are char-
acterized by a trabecular texture that can

not be easily parametrically-estimated.
In this context, the first application we propose is the non-

supervised segmentation of X-ray images of hip bone in the frame-
work of osteoporosis diagnosis. Fig. 2 shows the particular structure
to highlight (see green circles) for the achievement of a quantifica-
tion of the severity of the pathology. Moreover, we also show on
Fig. 2 a classic result of segmentation (in red) obtained thanks to
standard active contour segmentation based on the minimization of
the mean and the variance of the inner and the outer regions of the
curve. As one can notice, the segmentation results are not satisfying
since the important structures of the bone are not preserved due to
the presence of some areas of less density. Calculations of quanti-
tative parameters like curvature of the bone are then biased. Fig. 3
shows now segmentation obtained with the proposed approach of
this article and for different distances. As one can notice on Fig. 3,
usual distances do not make possible a satisfying segmentations:
The Hellinger distance provides a segmentation result (Fig. 3.b
and 3.e) too smooth that leads to an oversegmentation of the whole
bone, and the KL divergence definitely do not fit to this segmenta-
tion task (Fig. 3.c and 3.f). Finally, this is a non-standard value of α
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Hip segmentations from X-ray acquisition for different
α value (to each row corresponds a different acquisition): (a, d)
α = 0.75, (b, e) α = 0.5 (Hellinger/Bhattacharaya distance), (c, f)
α → 1 (Kullback-Leibler divergence)

(a) (b)

Fig. 4. Segmentation of vertebrae structure with different α value.
(a) α = 0.75, (b) α → 1 (Kullback Leibler divergence)

(0.75) that leads to the best segmentation results (Fig. 3.a and 3.d).
Another clinical application proposed for illustration is X-ray

vertebrae segmentation. In the framework of this particular appli-
cation, clinicians are interested in the quantification of the distance
between the different vertebrae of the spine in order to character-
ize some abnormalities of the main structure (see [16] for a clinical
description of the problem). Results of segmentation using the pro-
posed approach are shown on Fig. 4. Once again, one can notice
that better segmentation (in terms of global shape extraction) is pos-
sible with a non-standard value of α parameter (0.75) compared to
usual distances (here only KL divergence result is shown since for
Hellinger criterion, results where not exploitable).

4. CONCLUSION

In this paper, we have proposed an unsupervised statistical region-
based active contour method integrating maximization of alpha-
divergences between PDF of inner and outer regions of the active
curve. The proposed approach is a generalization of the standard
methods of that kind, based on KL or Hellinger divergences mainly,
for which we also proposed the original complete derivation of the
PDE considering non-parametric estimations of pin and pout. The
preliminary studies made first on synthetic images - corrupted by
high Gaussian and Poisson noises - and, second, on X-ray images
charaterized by high Poisson noise and complex trabecular texture,
have shown the flexibility of the alpha-divergence parameter in the
framework of unsupervised segmentation. The main improvement

we are currently working on is to automatically and locally adapt α
parameter to the segmentation context.
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