
SUPER RESOLUTION OF 3D MRI IMAGES USING A GAUSSIAN SCALE MIXTURE 
MODEL CONSTRAINT

Rafiqul Islam, Andrew J. Lambert and Mark R Pickering, 

School of Engineering and Information Technology,
The University of New South Wales at the Australian Defence Force Academy, Canberra, Australia

ABSTRACT

In multi-slice magnetic resonance imaging (MRI) the 
resolution in the slice direction is usually reduced to allow 
faster acquisition times and to reduce the amount of noise in 
each 2-D slice. In this paper, a novel image super resolution 
(SR) algorithm is presented that is used to improve the 
resolution of the 3D MRI volumes in the slice direction. The 
proposed SR algorithm uses a complex wavelet-based de-
blurring approach with a Gaussian scale mixture model 
sparseness constraint. The algorithm takes several multi-
slice volumes of the same anatomical region captured at 
different angles and combines these low-resolution images 
together to form a single 3D volume with much higher 
resolution in the slice direction. Our results show that the 3D 
volumes reconstructed using this approach have higher 
quality than volumes produced by the best previously 
proposed approaches.

Index Terms— Magnetic Resonance Imaging, Super 
Resolution, Gaussian Scale Mixture Model, Wavelet 
Regularization. 

1. INTRODUCTION

Magnetic resonance imaging (MRI) is used to capture 
images of the human body or parts of the body for clinical 
purposes. An MRI scanner is capable of acquiring 2D cross-
sectional images of the human body from any orientation. It 
is a non-invasive method and uses strong magnetic fields 
and non-ionizing radiation in the radio frequency range. In 
multi-slice MRI multiple 2D slices are captured to form a 
3D volume of the desired body part. However, the resolution 
in the slice direction is usually reduced to allow faster 
acquisition times and to reduce the amount of noise in each 
2-D slice. To deal with this problem, a number of image 
super resolution (SR) techniques have been used as a post-
processing method to improve the quality of the low 
resolution images.

The basic idea underlying all SR algorithms is the 
combination of a number of low resolution blurred noisy 
images to produce a single higher resolution image. In recent

years, many super resolution algorithms have been proposed 
[1]. Within this wide area of study, medical image super 
resolution has emerged as a particularly active field. Several 
reconstruction methods have been developed to combine 
low resolution MRI images to produce one super resolution 
MRI image [2-6]. In this paper, we present a wavelet-based 
super resolution algorithm for MRI images which is based 
on the de-blurring algorithm developed by Zhang and 
Kingsbury [7]. Our results show that this algorithm provides 
superior performance for improving the accuracy of 
segmented volumes in 3D brain MRI data. 

The remainder of the paper is organized as follows: In 
Section 2, we explain the de-blurring approach used in our 
SR approach. Our proposed extensions to this approach for 
generating a super-resolution volume are presented in 
Section 3. Section 4 is devoted to the experimental 
evaluation of the algorithms tested and finally our 
conclusions are presented in section 5.

2. IMAGE DE-BLURRING USING WAVELET-BASED 
REGULARIZATION

The main objective of image de-blurring algorithms is to 
find the solution of an ill-conditioned equation of the form 
[8]:

bHxy o (1)

where xo is a vector of pixel values from the original image, 
y is a vector of pixel values from the observed blurry image, 
H represents a convolution (i.e. block-circulant) matrix that 
approximates the blurring function and b is a vector 
representing noise.

A solution to this mimization problem can be explained 
by first considering the case when the noise term b is set to 
zero. The cost function for this case is given by:

2
2HxyxJ (2)

The solution that minimizes this cost function is given by the 
classic Landweber iteration as follows: 

HxyHxx nn 1 (3)
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Now consider the case when no blurring occurs but 
noise is present in the system. A cost function that aims to 
minimize the 1 norm of the wavelet coefficients of x can be 
used to solve this problem as follows:

1
2
2 WxxyxJ (4)

where the matrix W represents the wavelet transform 
operation and is a regularization parameter. The optimal 
solution for this function is provided by soft-thresholding of 
the wavelet coefficients of x as follows:

2,WxMx (5)

where M denotes the inverse wavelet transform operation 
and the function tw, is the soft-thresholding function. 

Daubechies et. al. proposed a solution to the problem of 
estimating the value of xo when both blurring and noise are 
present by using the thresholded-Landweber algorithm [9].
This approach consists of first performing the Landweber 
iteration with step-size :

HxyHxz nn (6)

and then performing the wavelet domain de-noising 
operation:

2,1 nn WzMx (7)

Vonesch and Unser improved this approach by 
developing the fast thresholded-Landweber (FTL) de-
blurring algorithm[10]. In their approach, the original 
thresholded-Landweber operation is performed on a wavelet 
sub-band basis using different step-sizes for each sub-band 
as follows: 

For each sub-band j perform the Landweber iteration 
with step-size j:

HxyHxWz j
n

j
n
j (8)

where the matrix Wj represents the wavelet transform 
operation for sub-band j. Then perform the wavelet domain 
de-noising operation on each sub-band and apply the inverse 
wavelet transform to find the updated version of x:

Sj
j

n
jj

n 2,1 zMx (9)

3. SUPER RESOLUTION USING A GSM MODEL 
CONSTRAINT

In our proposed approach we extended the FTL algorithm to 
include multiple observed images and sub-sampling in the 
image acquisition model. Hence, the objective of our super 
resolution algorithms is to find the solution of an ill-
conditioned equation of the form: 

iii bxDHFy o (10)

where yi is a vector of pixel values from the ith observed 
image, Fi is a warping matrix used to register xo with yi and 
D is a sub-sampling matrix. 

To accommodate this extension we modify the 
Landweber iteration in (8) as follows:

ki
ii

TTT
ij

n
j

n
j

1
xDHFyDHFxWz (11)

The wavelet-domain de-noising is then performed with 
the following function which is based on a Gaussian Scale 
Mixture (GSM) model, tz, proposed by Zhang and 
Kingsbury in [7]:

22
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ˆ

ˆ
,

j

jj
j

w

zw
z (12)

where jŵ is calculated using the bi-variate shrinkage 

algorithm defined in [11] on the wavelet coefficients of nx
and is a regularization parameter.

4. PERFORMANCE EVALUATION

4.1 Experimental Procedure

We conducted experiments to evaluate the performance of 
the proposed super-resolution algorithm for the purposes of 
increasing the resolution of 3D MRI images for simulated 
brain MRI images. The simulated input data used was a 3D 
MRI brain volume from the Brain Web Simulated Database 
[12]. We compared the performance of our proposed 
algorithm with a super resolution algorithm based on 
directional bilateral total variation regularization (DBTV) 
[13] as well as the Simultaneous Additive Reconstruction 
Technique (SART) [14] approach as these were found to be 
the best performing of the recently proposed SR approaches 
of. The wavelet transform used in our algorithm was a 3D 
dual tree complex wavelet transform (DTCWT) as this
transform was found to be superior to the Shannon wavelet 
in [7].

In our experiment, we took a 3D volume with 1mm 
resolution in the slice-select direction and rotated it about all 
three axes simultaneously by 1, 2, 3 and 4 degrees. Each of 
these rotated volumes was then sub-sampled by a factor of 4 
in the slice select direction. Blur and noise were also added 
to simulate the effect of the image acquisition process.
Figure 1(a) shows a slice from the original volume. In the 
MRI acquisition process the point spread function (PSF) is 
defined by the slice excitation profile function. In our 
experiment, the slice profile functions are approximated by 
Gaussian functions with the full width half maximum 
(FWHM) distance set to the selected slice thickness.
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4.2 Experimental Results

Figure 1(b) shows a slice from one of the sub-sampled, 
blurred and noisy input volumes, Figure 1(c) shows one slice 
from the output of the SR with DBTV algorithm, Figure 1(d)
shows one slice from the output of the SR algorithm using 
SART and Figure 1(e) shows one slice from the output of 
our proposed SR algorithm using a GSM model constraint. 
These images clearly show the improved subjective quality 
of the output of our proposed algorithm. The arrows in 
Figure 1(e) indicate areas of improved resolution for the 
proposed algorithm.

For a practical measure of the quality of the estimated 
super resolution volume we use a measure of the accuracy of 
a 3D segmented region produced using the estimated 
volumes. We call this measure the segmentation difference 
(SD) and it is defined as the percentage of voxels which are 
segmented differently for the estimated volume compared to 
the segmentation produced using the original volume. For a 
more standard evaluation we also compared the Peak Signal-
to-Noise Ratio (PSNR) between the output volume and the 
original volume as a function of the iteration number. 

The results of these comparisons are shown in Figure 2
and Table 1. Figure 2(a) shows a plot of the segmentation 
difference at each iteration when the white matter from the 

estimated super-resolution volumes was segmented and 
compared to the segmented white matter from the original
volume. Figure 2(b) shows the curves for PSNR of the 
estimated volume compared to the original volume for each 
SR technique. These results clearly show that the 
performance of our proposed SR algorithm using a GSM 
model constraint is superior to the alternative SR with 
DBTV and SR with SART algorithms. The PSNR values 
when compared with the original volume after fifteen 
iterations of each algorithm are shown in Table I.

TABLE I. FINAL PSNR VALUES FOR EACH ALGORITHM

Algorithms SR with 
DBTV

SR using 
SART

SR using 
GSMM

constraint

PSNR (dB) 40.59 41.96 42.55

5. CONCLUSIONS

In this paper, we presented a super-resolution algorithm 
using a Gaussian Scale Mixture Model to approximate the 
wavelet sparseness constraint. The algorithm takes several 
multi-slice volumes of the same anatomical region captured 

(a) Original slice (b) low resolution slice

(c) SR with DBTV (d) SR with SART (e) proposed

Figure 1. One slice from (a) The original volume, (b) One of the low resolution input volumes of size 32128128
pixels, (c) The output volume for the SR with DBTV algorithm, (d) The output volume from the SR with SART algorithm

and (e) The output volume for the proposed SR with GSMM constraint algorithm.
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at different angles and combines these low-resolution images 
together to form a single 3D volume with much higher 
resolution in the slice direction. Our results show that using 
this constraint provides superior performance to the 
alternative SR with DBTV and SR using SART approaches
both visually and quantitatively.
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Figure 2. (a) The segmentation difference and (b) The PSNR for the SR algorithms using DBTV, SART and the proposed 

GSM model constraint.
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