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ABSTRACT
We introduce a new edge-directed interpolator based on lo-

cally defined, straight line approximations to image isophotes.

The first spatial derivatives of image intensity are used to de-

scribe the behavior of pixel-intersecting isophotes in terms of

their slopes. Slopes are determined by inverting a tridiago-

nal matrix and are forced to vary linearly from pixel to pixel.

Image resizing is performed using standard, 1D interpolators

along the approximated isophotes. The proposed method can

accommodate arbitrary scaling factors, provides state-of-the-

art results in terms of PSNR as well as other quantitative qual-

ity metrics, and has the advantage of computational complex-

ity that is directly proportional to the number of pixels.

Index Terms— interpolation, least squares methods

1. INTRODUCTION

Image resolution limits the extent to which zooming enhances

clarity, restricts the quality of digital photograph enlarge-

ments, and, in the context of medical images, can prevent

a correct diagnosis. Single image interpolation (zooming,

upsampling, or resizing) can artificially increase image reso-

lution for viewing or printing, but is generally limited in terms

of enhancing image clarity or revealing higher frequency con-

tent. A wide variety of non-linear interpolation methods have

been designed to improve upon linear interpolation results by

avoiding or correcting for common artifacts that stem from

aliasing and artificial grid-alignment.

Jagged or blurred edges significantly detract from image

appearance and many interpolation algorithms have been de-

veloped to avoid such artifacts. Adaptive-kernel methods ad-

just the contributions of pixels in the region according to some

definition of local structure. These adaptations are designed

to interpolate primarily along the edges minimizing the con-

tributions of cross-edge neighbors. [1] uses radial basis func-

tions and selects from a collection of stencils based on en-

closed curvature. Stencils or blocks of wavlet coefficients are

also used in [2] to identify interpolation directions with the

greatest regularity.
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In [3], the low-resolution covariance is used to estimate

high-resolution covariances and define the best weighting

scheme based on Wiener filtering theory. [4] extends this

approach to use soft-decisions to define interpolation pa-

rameters for groups of pixels simultaneously. First-order

derivatives have also been used to identify edge direction

explicitly ([5, 6]). In [7], first order derivatives are used as

a preliminary thresholding value and covariances are used to

determine more closely matched pairs of neighboring pixels.

The edge-adaptive-kernel interpolators proposed in pre-

vious work are not always equipped to handle fine detail,

as some require rather large support regions. Furthermore,

the computational burden of these methods can be extensive.

As a result, potential orientations are commonly quantized

and sufficiently smooth regions are often parsed out and ad-

dressed with simpler methods. Additionally, corners and re-

gions of high curvature are poorly accommodated or must be

addressed as special cases. The same is true of ridges or very

thin edges. Many previous methods are also limited to scaling

factors of two.

We present a new method, soft-adaptive gradient angle

(SAGA) interpolation, that uses first-order derivatives to ap-

proximate isophotes. This new approach adapts to interpo-

late along vectors that represent the local isophotes (lines of

constant intensity). The vectors are determined based on the

isophote slope while ensuring that the direction of interpola-

tion varies linearly from pixel to pixel. The SAGA method

addresses smooth, high-curvature, and ridge regions, can be

implemented for arbitrary (non-integer) scaling factors, and is

separable into row-wise and column-wise interpolations.

Based on quantitative image quality metrics, SAGA in-

terpolation performs comparably to state-of-the-art methods

such as Soft-Decision Adaptive Interpolation (SAI) [4] and

Sparse Mixing Estimators (SME) interpolation [2], and per-

forms better than common benchmarking algorithms includ-

ing bicubic interpolation, improved New Edge Directed In-

terpolation (iNEDI) [3], and Iterative Curvature-Based Inter-

polation (ICBI) [7]. The primary advantage of SAGA inter-

polation is uniquely low computational complexity (it scales

directly with the number of pixels).
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Fig. 1. For a straight line of isointense pixels forming an angle

θ with the horizontal pixel grid, points on the line where it

intersects with the lattice can be written in terms of α and β.

2. VECTOR APPROXIMATIONS OF ISOPHOTES

Image isophotes (lines of constant intensity) are essential to

human visual perception. Excessive curvature or breaks in

isophotes can make a digital image look unnatural and unap-

pealing. Interpolating along rather than across isophotes can

minimize the introduction of such artifacts. Defining what

constitutes ‘along’ is the primary aim of edge-directed inter-

polation algorithms, including SAGA.

The straight isophote shown in Figure 1 that crosses

through the image pixel at location (x, y) has an intensity

that can be expressed as I(x, y). Using parameters α and β,

points along the isophote have the same intensity:

I(x− α, y − 1) = I(x, y) = I(x+ α, y + 1), (1)

I(x− 1, y − β) = I(x, y) = I(x+ 1, y + β). (2)

The Taylor series expansion can be used to separate the pa-

rameters α and β from the intensity terms using the x and y
partial derivatives. For simplicity, we will focus only on the

determination of the parameter α. Equivalent expansions and

expressions for defining β are a straight-forward extension.

Expressions derived from the expansion of Equation 1 are:

0 ≈ I(x, y)− I(x, y − 1) + α∂I(x,y−1)
∂x , (3)

0 ≈ α∂I(x,y)
∂x + ∂I(x,y)

∂y , and (4)

0 ≈ I(x, y + 1)− I(x, y) + α∂I(x,y+1)
∂x . (5)

Based on these expansions we define the following con-

solidated expression for α moving forward:

0 = αĪx(x, y) + Iy(x, y). (6)

Here, Iy is the partial y derivative computed with a cen-

tered, finite difference and Īx is the x partial derivatives com-

puted with a 3 × 3 derivative kernel (we use the modified

Sobel formulation). Use of the 3 × 3 kernels is motivated

by the three row span of Equations 3-5. It is noteworthy that

an α that satisfies Equations 6 and a similarly defined β do

not necessarily satisfy Equations 1 and 2. Furthermore, β is

not necessarily equal to α−1. Rather, Equation 6 provides a

separate expression for estimating vectors [±α,±1] that ap-

proximate the local isophote based on the gradient defined

slope. Our method comprises determining and interpolating

along these vectors and those estimated by the parameter β.

3. SOFT ADAPTIVE GRADIENT ANGLE
INTERPOLATION

Effective interpolation based on the gradient angle or other

first-order derivative metrics has been demonstrated previ-

ously [5, 7]; however, a number of scenarios present problems

for such techniques. For example, in areas of high curvature,

the neglected second order terms can become significant and

contribute artifacts. Furthermore, in smooth or ridge regions

where the gradient magnitude is small, computations are sen-

sitive to noise and are likely to be misestimated. As a result,

many approaches use alternative methods to interpolate pixels

that violate thresholds for curvature or gradient magnitude.

To avoid these pitfalls, we ‘soften’ Equations 6 by intro-

ducing a regional dependancy. The α describing the isophote

at position (x, y) is allowed to influence the α assigned to

(x − 1, y) and (x + 1, y) and visa versa. Details of the soft-

ened optimization framework as well as the specifics of our

algorithm implementation follow.

For a given line of N pixels, we assert that there exists a

vector of displacement parameters (α or β) that describes the

offset in the indexing direction (x for rows and y for columns)

to the best intensity-matched pixels in the adjacent lines. We

introduce a stiffness parameter k such that elements in α or

β are linearly related over segments of k pixels.

For θ1 and θ2 linear basis functions:

θ1(i) =
k − i

k
and θ2(i) =

i

k
, (7)

the full displacement vectors can be computed from every kth

displacement. For example:

α(x+ i, y) = [θ1(i) θ2(i)]

[
α(x, y)

α(x+ k, y)

]
, (8)

where pixel locations (x, y) and (x + k, y) are considered

‘nodes’ and the inter-nodal pixel displacements are interpo-

lated.

For simplicity, we’ll continue by describing the algorithm

in 1D (indexing only in x) as it is used to determine the vec-

tor of horizontal displacements α for a single row. The de-

termination of α for each row is an independent and identical

process that can be run in parallel. The algorithm for deter-

mining the vector β for a column is a straightforward change

of variables.
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3.1. Determination of Optimal Displacements

Using Equation 6 and the softened framework, we define the

matching error for the horizontal displacements associated

with pixels in a given row as:

E(αL) = ‖diag(Īx)ΘαL + Iy‖2, (9)

where Θ applies the bilinear interpolation basis functions

such that,

α = ΘαL, (10)

α is the vector of horizontal displacements, L is the set of

nodes [1, 1+k, 1+2k, ..., N ], and αL = α(x ∈ L) is the set

of nodal displacements. Īx and Iy are column vectors con-

taining the derivatives for each pixel in the row and diag(Īx)
is a matrix with the elements of Īx along the diagonal.

3.2. Selection of Nodes and Matrix Condition

The matching error associated with the least squares mini-

mization of Equation 9 is determined by the density (1/k)

and the placement of the nodes. Considering the case where

k = 1 and Θ reduces to the identity matrix:

E(αL) = ‖diag(Īx)αL + Iy‖2, (11)

the solution reduces to a strict, gradient angle-based assess-

ment of the image isophotes (α(x, y) = −Iy(x, y)/Ix(x, y))
and edges are treated as perpendicular to � ∇I(x, y) =
Iy(x, y)/Ix(x, y). For images that are piecewise stationary,

the matrix diag(Īx) will likely be singular or poorly condi-

tioned (the singular values are such that σ1 = max(|Īx|) and

σN = min(|Īx|)). Ideally, the nodes in L should serve to

partition the line of pixels into stationary groupings. For com-

putational efficiency, the precomputed derivatives (Īx) can

be used as a simple indicator of change within a finite-size

search window.

3.3. Solving for Displacements and Complexity

We define the combined coefficient matrix: J = diag(Īx)Θ.

The normal equation describing the least-squares solution to

Equation 9 can be written as:

JTJαL = JT (−Iy). (12)

J has 2N−L nonzero entries where N is the number of pixels

in the line and L is the number of nodes (nominally equal to

N/k). Computing the products JTJ takes (2(2N − L)− L)

multiplications. Defining JT (−Iy) requires (2N −L) multi-

plications. Setting up Equation 12 has complexity O(N). In

solving the normal equation, we observe that JTJ is a tridi-

agonal, LxL matrix. The solution can be directly obtained

using the tridiagonal matrix algorithm (O(L)).
For each line of pixels, the full displacement vector α is

calculated from the nodal displacements in αL using the in-

terpolation matrix Θ (as in Equation 10) and requires (2N −

L) multiplications. The overall order of complexity for com-

puting the displacement vector α for a line of pixels of length

N is O(N) with the matrix multiplication JTJ being the

most intense step. For a full image, two displacements are

computed for each pixel and the complexity scales directly

with the number of pixels (O(MN) for an MxN matrix).

3.4. Interpolation Based on Displacements

The complete set of displacements (one horizontal and one

vertical for each pixel) can be used to define four ‘matched’

locations in the original resolution image. For the pixel at

location (x, y) these locations are (x ± α(x, y), y ± 1) and

(x ± 1, y ± β(x, y)). We construct four, separately interpo-

lated images by inserting data along the vectors connecting

the original pixels to the matched locations as described in

[6]. The interpolated images are then combined with weight-

ing at each pixel inversely proportional to their distance to the

mean estimate.

4. RESULTS

The results of the algorithm will be compared with alternative

techniques for two-times expansion of a variety of standard

test images. The complexity of similarly accurate methods

will be compared to that of SAGA.

4.1. Comparison to Other Methods: Accuracy

The results of a two-times interpolation of several standard

test images were compared. In addition to the proposed

SAGA method, bicubic interpolation, iNEDI [3], ICBI [7],

SAI [4], and SME interpolation [2] were used. All results

were evaluated in terms of peak signal to noise ratio (PSNR)

as well as visual signal to noise ratio (VSNR) (both in deci-

bels) and the Universal Quality Index (UQI). All evaluations

were performed using Image and Video Quality Evalua-

tion Software (http://ivulab.asu.edu/Quality/
IVQUEST) [8]. The values for each metric are reported in

Table I with the best performing result in bold. Average im-

provements relative to bicubic interpolation are also reported.

Overall, SAGA interpolation results are as accurate as those

obtained with state-of-the-art methods SAI and SME and

better than bicubic interpolation, iNEDI, and ICBI. Figure

2 provides visual comparisons of the methods for detailed

regions of the Lena and Mandrill images.

4.2. Comparison to Other Methods: Computation

In terms of accuracy, SAGA is comparable to SME and SAI.

One advantage of SAGA is its low complexity. For Z =
MN , the number of pixels, the overall order of the SAGA

approach in computing the isophote-slope-characterizing pa-

rameters is O(Z). In contrast, SME uses a more complex

O(Zlog(Z)) approach to describe edge orientations through
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Fig. 2. Comparison of interpolation results for the tested methods. Regions shown are from the Lena and Mandrill test images.

The “High-resolution” image was two-times down-sampled and enlarged using SAI, SME, and SAGA.

Table 1. Quantitative evaluation of interpolators.

a block matching approach [2]. SAI solves three least-squares

problems to directly define an image with two-times the origi-

nal resolution. The approach is iterative and only pixels in re-

gions with high local variances are directionally interpolated.

Based on O(Z) complexity of SAGA, the O(Zlog(Z)) com-

plexity of SME, and the iterative nature of SAI, SAGA is,

generally speaking, the least complex of the three techniques.

5. CONCLUSIONS

We have introduced a new, edge-directed interpolator called

Soft Adaptive Gradient Angle (SAGA) interpolation. Based

on quantitative image quality metrics, SAGA performs com-

parably to other state-of-the-art methods, and is better in

many cases. Furthermore, the algorithm operates with

uniquely low computational cost. In addition, the SAGA

algorithm is well suited for parallelization as image lines can

be processed independently.
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