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ABSTRACT

In this paper, we analyze the effect of texture regularity on the per-
formance of image resizing (or called image retargeting), and then
propose an efficient texture-aware resizing algorithm. Being per-
ceived as unimportant due to spatial homogeneity, textured patterns
are largely deformed (or warped) in existing image resizing algo-
rithms. However, arbitrary warping without considering the spe-
cific texture property tends to lead to noticeable visual artifacts. To
address this issue, we exploit region features, including the scale
and the shape information, to preserve both local and global struc-
tures. Guided by region and contour information, we propose a
mesh-based resizing technique, which is formulated as a nonlinear
least squares optimization problem and solved by an iterative Gauss-
Newton method. Texture redundancy is effectively reduced through
texture regularity analysis and real-time texture synthesis. The supe-
rior performance of the proposed image resizing technique is demon-
strated by experimental results.

Index Terms— Image resizing, region-adaptive, texture redun-
dancy

1. INTRODUCTION

The demand to adapt images to display devices of various aspect

ratios and resolutions calls for new solutions to image resizing (or

called image retargeting). Traditional image resizing techniques are

incapable of meeting this requirement since they may either dis-

card important information (e.g., cropping) or produce distortions

by over-squeezing the content (e.g., non-uniform scaling).

Recently, several techniques have been proposed for content-

aware image resizing. Avidan and Shamir [1] proposed a seam-

carving algorithm, which resizes an image by incrementally remov-

ing or inserting seams. Another class of image resizing methods is

based on image warping. In [2], a grid mesh is placed onto the im-

age, and resizing is formulated as computing the new mesh geometry

based on a specified size. Studies show that no single retargeting op-

erator could perform well on all images, and an algorithm combin-

ing multiple retargeting operators has been recently proposed [3].

Although this method demonstrates superior performance, its com-

putational cost is relatively expensive for practical usage.

The above methods and their variants are mostly guided by

pixel-wise significance, which is computed using either the gradient

or saliency information. The saliency map implies visual attrac-

tiveness of an area while the gradient map indicates the presence

of edge components. However, using an individual pixel as a basic

unit may result in inaccurate characterization since both maps are

weakly correlated with the underlying object structure. Specifically,

with these measures, part of an object may be well preserved as it

contains high contrast fine structures while the rest undergoes heavy

distortion due to its homogenous surface.

Texture redundancy is another issue that remains unaddressed in

previous image resizing work. Repetitive textures could be modeled

as a primitive texture element that is replicated according to cer-

tain placement rules [4]. An ideal resizing solution for these textures

would be reducing the total number of replications while keeping the

primitive element intact. However, previous resizing schemes usu-

ally leaves the replication number unchanged and distorts the shape

of primitive texture element.

More recently, Wu [5] proposed a novel image resizing tech-

nique that further explores the underlying image semantics. Sym-

metrical regions are resized by summarization while non-symmetrical

regions are handled with traditional warping method. This method

effectively addresses texture redundancy, and opens a new direction

for media retargeting.

In this paper, we propose a computationally efficient image re-

sizing algorithm that is aware of texture properties and capable of

preserving underlying object structures. The image is divided into

three different types of regions, each of which is treated differently.

We resize salient and irregular regions by shape-preserving warping

method and regular regions using fast texture-synthesis technique.

The rest of this paper is organized as follows. The impact of

texture regularity on image resizing is studied in Section 2. The

proposed algorithm is presented in Section 3. Experimental results

are shown in Section 4. Finally, concluding remarks are given in

Section 5.

2. IMPACT OF TEXTURE REGULARITY ON RESIZING

Based on the degree of randomness, most real-world textures can

be roughly classified as regular or stochastic. Regular textures usu-

ally appear as periodic patterns with repeating intensity, color and

shape elements. Stochastic textures, with features opposite to repeti-

tiveness, exhibit less noticeable structures and display rather random

patterns. As revealed by the experiment in [4], regularity plays a

significant role as a high-level feature for human texture perception.

Previous image resizing algorithms are mostly guided by the

saliency map [6], which gives higher importance to regions that

present distinct properties (color, intensity or orientation) with re-

spect to their surroundings. Textured regions, regular and stochastic,

are usually perceived as unimportant due to spatial homogeneity,

and largely deformed during resizing in order to keep the prominent

object intact.

This treatment may not provide satisfactory resizing results.

Distortion in stochastic texture may be less noticeable because of

its structural randomness. However, for regular textures, structural
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defects caused by arbitrary warping may result in serious visual arti-

facts. This is due to human’s innate ability to perceive symmetry and

the human vision system has specialized receptive fields responding

to the disruption in regularity [7]. An example is given in Fig. 1,

where we compare the resizing results of three different schemes

[1, 2, 8] on regular and stochastic textures.

Fig. 1. Image resizing results for brick wall (regular texture) and sky
(stochastic texture) using three different schemes.

As shown in Fig. 1, we see that all three algorithms produce rea-

sonable resizing results on sky, an example of stochastic texture, but

they perform differently on brick wall, an example of regular texture.

For the brick wall image, the patch-based texture synthesis approach

[8] performs the best among all three algorithms. Seam carving [1]

and scale-and-stretch [2] do not fully exploit pattern regularity in re-

sizing so that it fails to reduce texture redundancy. The geometric

defect on each brick piece induced by these two approaches leads

to disruption in texture regularity, which is highly visible to human

eyes. On the other hand, for the sky image, the distortion caused

by [1, 2] is relatively subtle since its structure is less regular and the

resultant deformation is less noticeable.

3. REGION-ADAPTIVE IMAGE RESIZING

The proposed region-adaptive resizing method consists of three main

steps. First, the original image is partitioned into multiple regions

and classified as salient, regular or irregular according to visual

saliency and texture regularity. This is called the region map. Sec-

ond, we resize the region map through mesh warping which incor-

porates both the region and the contour information. Finally, based

on region features, the final result would be generated using either

warping or texture synthesis. Each individual step is detailed below.

3.1. Region Map Generation

The image is segmented using mean-shift segmentation method

[9], which takes three parameters as input: spatial bandwidth hr ,

color bandwidth hs and minimum pixel number per region N . To

speed up, we segment the down-sampled original image and then

up-sample its result back to the original size. Median filter is applied

to further smoothen region boundaries.

Then, we compute individual pixel significance using the

saliency measure proposed in [6]. Based on our observation, high-

saliency regions computed by this measure sometimes covers only

part of real prominent objects, while some areas surrounding promi-

nent objects may be mistakenly considered as salient. Therefore, we

use region saliency, computed by averaging pixel saliency within the

region, to ensure uniform resizing of the underlying object.

To measure pattern regularity, we apply the scoring system

based on the Gabor-filtering-based texture descriptor [10]. Each

region is filtered with a set of 24 Gabor filters (including 6 ori-

entations and 4 scales). The filtered results are projected along

horizontal/vertical directions, and the normalized autocorrelation

function (NAC) is computed. The periodicity of NAC could be

captured by multiple projections for highly structured textures (e.g.
brick wall, fence, etc.) while this periodicity is either very weak or

does not exist at all for stochastic textures (e.g. sky, grass, etc.).

To generate the region map, regions with prominent saliency and

texture regularity are classified as salient and regular, respectively,

while the rest are labeled as irregular.

3.2. Mesh Warping

We cover the region map with a grid mesh denoted by G =
(Vq,E,F), where Vq, E and F represent sets of quad vertices,

edges and quad faces, respectively. In addition to quad vertices, we

add a set of contour vertices, Vc, to better preserve region geometry.

The contour vertices are derived by tracing along the region contour

and sampling contour pixels at every interval of Ts (see Fig. 2).

Fig. 2. Two types of vertices for mesh warping: quad and contour.

Our mesh warping algorithm takes as input the initial vertex po-

sitions and solves for the new mesh geometry. To formulate this

global optimization problem, we consider the following factors.

1) Saliency-weighted shape preservation

Given quad face f and its quad vertices Vq(f), we measure the

shape deformation of f as its loss of squareness with the following

energy:

D(f) =
∑

vi,vj∈Vq(f)

∥∥(v′
i − v′

j)− sf (vi − vj)
∥∥2

,

where sf is the optimum scaling factor of quad f . The shape-

warping energy of all quad faces is given by

∑
f∈F

wf(R)D(f), (1)

where wf(R) is the saliency of the region affiliated with quad f .

Apparently, quad faces from the same region would be resized ho-

mogeneously while the majority of distortion tends to be diffused to

non-salient regions.

2) Laplacian coordinates preservation

During the mesh warping, we preserve the region contour Lapla-

cian coordinates by minimizing the following energy:
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∑
vi∈Vc

‖L(vi)−Tiδi‖2 , (2)

where Ti is a 2 × 2 transform matrix of vi and will be updated

iteratively during optimization.

3) Mean-value preservation

To prevent contour vertices from shifting to another quad during

the mesh warping, we preserve its relative position with surrounding

quad vertices by maintaining its mean value coordinates [11]. For

every contour vertex vi ∈ Vc, we try to minimize:

∑
vi∈Vc

∥∥∥∥∥∥vi −
∑

vj∈F(vi)

λij · vi

∥∥∥∥∥∥

2

, (3)

where λij = mij \∑j mij , mij is the mean value coordinate of vj

with respect to vi, and F(vi) is the quad face where vi was origi-

nally located.

Let us use ‖PV −Q‖2 to denote the position constraint im-

posed by the new image size, hnew × wnew. By incorporating the

energy terms in Eq. (1)- (3), the total energy we want to minimize

could be written in the following matrix format:

‖DV − s(V)‖2︸ ︷︷ ︸
Eq.(1)

+ ‖LV − δ(V)‖2︸ ︷︷ ︸
Eq.(2)

+ ‖CV‖2︸ ︷︷ ︸
Eq.(3)

+ ‖PV −Q‖2 .

Different weights may be used to balance different objectives. Then,

we can express the above objective function as

min
V

‖AV − b(V)‖2 , (4)

where

A =

⎛
⎜⎜⎝
D
L
C
P

⎞
⎟⎟⎠ , b(V) =

⎛
⎜⎜⎝
s(V)
δ(V)
0
Q

⎞
⎟⎟⎠ .

The nonlinear least squares optimization problem given in Eq.

(4) can be solved using the iterative Gauss-Newton method. The

vertex positions are initialized under the homogenous resizing con-

dition, and they are updated iteratively via

V(k) = (ATA)−1ATb(V(k−1)) = H · b(V(k−1)), (5)

where V(k) is the vector of vertex positions after the kth iteration.

As H is only dependent on A, it can be precomputed and stay fixed

during the iteration.

3.3. Texture Re-synthesis

Based on the generated region map, salient and irregular regions

are resized with mesh warping as discussed in Sec. 3.2. In this

subsection, we focus on image synthesis in regular regions.

Regular regions are usually perceived as non-salient and largely

squeezed during mesh warping. To preserve texture content, we re-

synthesize textures on the resized regular region using the original

texture as exemplar. For speed up, we adopt a real-time texture syn-

thesis method proposed in [8]. Since salient and irregular regions

are already known, synthesizing on regular regions is a constraint

synthesis problem [8].

Directly applying texture synthesis may destroy the illumina-

tion of the original patterns. To enhance the authenticity of the re-

synthesized result, we first use a nonlinear decoupling filter [12]

to extract the illumination map, which is then used to guide the

(a) (b)

Fig. 3. (a) Patch selection guided by resized illumination map, (b)

Priority-queue-based texture placement following spiral order.

placement of each texture patch (see Fig. 3(a)). During texture

re-synthesis, a patch is selected as a qualified candidate only if it

minimizes the blending error and also matches the illumination level

at the desired location.

To further reduce the discontinuity artifacts at region boundaries,

we use a priority queue to store the location for patch placement.

Highest priority is given to areas close to salient regions, followed

by those within other region border zones. Patches are placed con-

secutively in spiral order (Fig. 3(b)).

4. EXPERIMENTAL RESULTS

The proposed image resizing algorithm was implemented on a PC

with Duo CPU 2.4 GHz. For region-map generation, values of hr =
5.0, hs = 4.0, N = 800 and Ts = 10 were used for all test images.

We used quad size of 20 × 20 pixels for mesh warping, and patch

size p×p = 90×90, overlap width wp = 15 in texture re-synthesis.

We demonstrate the effectiveness of our proposed region-

adaptive texture-aware resizing algorithm by comparing the results

obtained by [1, 2, 3] with ours in Fig. 4. Due to the greedy na-

ture of seam carving [1], it fails to prevent seams from passing

through prominent objects when the non-salient region is relatively

more structural than the prominent object (e.g., boy) and produces

noticeable distortion on structural objects (e.g., getty and blueman).

As compared with [2], the proposed region-adaptive method is

better in maintaining the shape of prominent objects since mesh

warping is guided by the region information. This ensures that the

underlying object undergoes homogenous scaling, as in getty image,

where the roof structure is non-uniformly warped by [2]. In particu-

lar, the proposed algorithm performs well on images containing large

areas of regular textures, e.g., boy image. As compared with [1, 2],

both of which produce noticeable distortion to the background wall

texture, the proposed method preserves the shape of each individual

wall brick and efficiently reduces texture redundancy.

For most images, our method is able to achieve comparable re-

sults as the multi-operator approach [3]. However, [3] may some-

times crop prominent contents, as seen in the boy image. In addi-

tion, texture redundancy is not perfectly reduced under this scheme

since cropping is the only operator among the three that effectively

addresses spatial redundancy. Our approach differs from [5] in that

we resize all regions with different ratios, depending on their rela-

tive region saliency, while in [5] this inter-region relationship was

not considered. In addition, we reduce spatial redundancy through a

fast and efficient texture synthesis technique.
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Fig. 4. Visual comparison of re-sized images using the proposed algorithm and [1, 2, 3]. From top to bottom: getty, blueman and boy.

Our method is computationally efficient since both region seg-

mentation and matrix factorization can be pre-computed. In our ex-

periments, the iterative algorithm converges within 3-10 iterations.

Table 1 shows the timing statistics for the three test images. The

computational time of our scheme is comparable to that of existing

real-time image resizing algorithms.

Table 1. Computational time for each procedure.

getty blueman boy
Vertex Number (|Vq|+ |Vc|) 425+232 425+213 600+148

Region Map Generation 0.28 s 0.27 s 0.31 s

Matrix Factorization 0.20 s 0.21 s 0.23 s

Back Substitution 0.01 s 0.01 s 0.01 s

Texture Synthesis - - 0.08 s

The proposed texture-aware resizing algorithm is not without

limitations. The effectiveness of this approach depends on the result

of region regularity detection. When we fail to identify a regular-

textured region, it will be resized by normal warping, which may

lead to noticeable artifacts. Another limitation is the performance

of texture synthesis. Though we try to minimize artifacts through

priority-based synthesis order and illumination adjustments, the syn-

thesis result may still be unsatisfactory for patterns with highly com-

plex structures.

5. CONCLUSION

In this work, we proposed an efficient texture-aware image resiz-

ing algorithm using the segmented region as basic unit. Guided by

region and the contour information, mesh warping was formulated

as a non-linear least square optimization problem, which strives to

preserve the local as well as the global object structures. Texture

redundancy was effectively reduced through pattern regularity de-

tection and real-time image synthesis. Experimental results demon-

strated improved image quality over state-of-the-art image resizing

algorithms.
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