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ABSTRACT

Rate-distortion optimization is widely used in modern video

codecs to make various encoder decisions in order to optimize

the rate-distortion trade-off. Typically, the distortion measure

used is either sum-of-square error (SSE) or sum-of-absolute

distance (SAD), both of which are convenient when used in

the RDO framework but not always reflective of perceptual

quality. In this paper, we show that by expressing SSIM in

terms of SSE, SSIM can be used as the distortion metric in

the RDO framework in an effective and efficient manner by

simply scaling the Lagrange multiplier used in RDO based

on the local variance in that region without further changes

to the RDO engine. Experimental results show that compared

to traditional RDO approaches, for the same SSIM score, the

proposed approach can achieve an average rate decrease of

8% and 11% for random access and low-delay encoding con-

figurations, with no significant change in encoding runtime.

Index Terms— SSIM, Perceptual based coding, video

coding, rate distortion optimization

1. INTRODUCTION

Traditionally in hybrid video coding, rate distortion optimiza-

tion (RDO) is used to choose the best operational point for

each coding block. When this is done, the sum-of-square er-

ror (SSE) or sum-of-absolute distance (SAD) is usually used

as the objective function, and so the optimization problem is

of the form: minimize SSE/SAD while satisfying a given rate

constraint.

However, it is well known that both SSE and SAD are

not good measures of perceptual quality. While many other

metrics, including the structural similarity index (SSIM) in-

troduced by Wang et al. [1], have been proposed, a straight-

forward way to incorporate them within the RDO framework

remains elusive despite several previous attempts. Typically,

these involve directly replacing the SSE with (1-SSIM) as the

distortion function, and using an empirical or model-based

approach for estimating the Lagrange multiplier to be used

within the RDO process [2–5]. Another approach involves

maximizing the minimum SSIM using a bit-plane based im-

age coder over multiple coding iterations [6]. Alternatively,

instead of directly optimizing a perceptual metric, a locally

varying perceptual-based lagrange multiplier is used for RDO

in each local region [7]; however, the scaling is done using

heuristics.

In this paper, we describe a simple approach that uses

SSIM effectively within the RDO framework. Essentially,

this can be achieved by scaling the Lagrange multiplier used

in RDO for each local region by the local variance in that re-

gion.

2. ANALYSIS

2.1. Relationship between SSIM and MSE

The SSIM between two image regions is defined as [1]:

SSIM =

(
2μxμy + c1
μ2
x + μ2

y + c1

)(
2σxy + c2

σ2
x + σ2

y + c1

)
(1)

where x and y are the two image regions to be compared, and

c1 = (κ1L)
2

and c2 = (κ2L)
2

are two constants used for

numerical stability. κ1 = 0.01 and κ2 = 0.03, and L is the

peak value of the image. Here, we would denote the original

image by x and the reconstructed image by y.

We use an additive distortion model for y, i.e., y = x+ e,

where e is the reconstruction error due to lossy quantization.

We will assume that e is a random variable with zero mean

and variance σ2
e . Note that MSE can be computed as

MSE =
1

N
Σi (yi − xi)

2
=

1

N
Σie

2
i (2)

where N is the number of pixels in the region, and the index

i denotes individual pixels within a region. From the law of

large numbers, as N gets large, MSE → σ2
e .

Now, we can also compute each of the terms in SSIM. It

is easily verified that μy = μx, σ2
y = σ2

x + σ2
e and σxy = σ2

x.

By substituting these into (1), we can simplify the expression

for SSIM into:

SSIM =
2σ2

x + c2
2σ2

x + σ2
e + c2

(3)

Since all the quantities in (3) are positive, under these assump-

tions, 0 < SSIM ≤ 1, and we can also define a distortion
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metric based on SSIM as follows:

dSSIM =
1

SSIM

= 1 +
σ2
e

2σ2
x + c2

≈ 1 +
MSE

2σ2
x + c2

(4)

where the last line follows from (2) for reasonably large val-

ues of N . Note that under this assumption, dSSIM ≥ 1.

(4) gives a convenient relationship between SSIM and

MSE that can be used for RDO decisions. It also has an

intuitive perceptual meaning, in that the perceptual distortion

is the MSE scaled by the inverse variance of the local region.

Therefore, for the same perception of visual degradation, the

MSE can be higher in a textured region compared to a smooth

region.

2.2. Using SSIM in RDO

Recall that for any block, the RDO decision can be done by

optimizing a Lagrangian cost [8, 9]:

J̃ = SSE + λ̃R = N · MSE + λ̃R

for an appropriately chosen Lagrange multiplier λ̃. To incor-

porate SSIM into RDO, we use the dSSIM as defined in (4)

to optimize the following:

J = N · dSSIM + λR

= N

(
1 +

MSE

2σ2
x + c2

)
+ λR

= N +
SSE

2σ2
x + c2

+ λR

= N +
1

2σ2
x + c2

(
SSE +

(
2σ2

x + c2
)
λR
)

Equivalently, we can also optimize the following for each

block:

J = SSE +
(
2σ2

x + c2
)
λR (5)

again for some appropriately chosen Lagrange multiplier λ.

(5) offers us a very convenient way to incorporate SSIM

into the RDO decision process. In fact, all that is required is

to do a local scaling of λ, depending on the local source vari-

ance. This means that the entire RDO machinery can be kept

as is, with just a minor modification of the Lagrange multi-

plier. There is again an intuitive explanation for this proce-

dure. For highly textured regions, additional rate would be

penalized more than in a smooth region, which means that a

larger SSE can be tolerated.

2.3. Picking λ for SSIM-RDO

While we have earlier shown how to optimize SSIM within

the regular RDO mode decision framework, there is still an

issue of how to choose an appropriate Lagrange multiplier,

λ. Here, we present one possible approach based on keeping

the overall rate of coding the frame the same, assuming that

the displaced frame difference (DFD) statistics is the same

whether MSE and SSIM is to be optimized.

Recall that when MSE is used, the optimization problem

is to minimize total distortion subject to a constraint on the

total rate, i.e., [8, 9]

min
Φ

SSE = Σidi s.t. R = Σiri ≤ Rc

where Φ denote the set of encoder decisions (e.g., MB mode,

QP), di is the SSE for the ith MB, and ri is the rate used

for the ith MB. This is solved by using the following uncon-

strained optimization problem:

min
{φi}M

i=1

J̃ = Σidi + λ̃Σiri = Σi

(
di + λ̃ri

)
(6)

where M is the number of MBs, and φi is the set of encoder

decisions for the ith MB. Typically, dependencies between

MBs are ignored, and we solve for each MB the following

unconstrained problem, minφi
di + λ̃ri.

In H.264/AVC [10] JM, the Lagrange multiplier is com-

puted as λ̃ = β ·2(QP−12)/3 [11]. This is justified by assuming

the following rate-distortion model for each MB [8]:

r(d)

N
= α log

(
σ2

d/N

)
(7)

where σ2 is the variance of the DFD in the MB, and d is the

SSE in the MB. Note that the normalization by N is necessary

to use the per-symbol characterization of the RD model even

when we consider an entire MB.

To solve (6), we set for each i:

∂J̃

∂di
= 1 + λ̃

∂ri
∂di

= 0 (8)

Using (7) in (8), we obtain:

d∗i = Nαλ̃

r∗i = Nα log

(
σ2
i

αλ̃

)

where d∗i and r∗i are the optimal SSE and rate for the ith MB

respectively, and σ2
i is the variance of the DFD for the ith

MB. Therefore, the total rate used is:

RSSE = NαΣi log

(
σ2
i

αλ̃

)

We can repeat the same exercise when dSSIM is used as

the objective function instead. Using (4), we would optimize

min
{φi}M

i=1

J = Σi
di

2σ2
xi

+ c2
+λΣiri = Σi

(
di

2σ2
xi

+ c2
+ λri

)
(9)
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where σ2
xi

is the local source variance for the ith MB.

To solve (9), we again set for each i:

∂J

∂di
=

1

2σ2
xi

+ c2
+ λ

∂ri
∂di

= 0 (10)

Using (7) in (10), we obtain:

d∗i =
(
2σ2

xi
+ c2

)
Nαλ

r∗i = Nα log

(
σ2
i

α
(
2σ2

xi
+ c2

)
λ

)

The total rate used is:

RSSIM = NαΣi log

(
σ2
i

α
(
2σ2

xi
+ c2

)
λ

)

As mentioned, we will pick λ in order for the rate to be

the same regardless of whether MSE or SSIM is used, and this

will be computed as a function of λ̃, the Lagrange multiplier

that is used in JM. By setting RSSIM = RMSE, we obtain:

λ = λ̃ · exp
(
− 1

M
ΣM

i=1 log
(
2σ2

xi
+ c2

))

This means that in using (5) to perform RDO decision, we

will use for the ith MB a Lagrange multiplier of:

λi =
2σ2

xi
+ c2

exp
(

1
MΣM

i=1 log
(
2σ2

xi
+ c2

)) λ̃ (11)

This is simply applying a scaling that depends on the local

source variance and some source variance statistic computed

over the entire frame to the original Lagrange multiplier used

in JM. This gives a very concrete way of applying a small

modification to the RDO process in order to maximize SSIM

over the entire frame.

3. EXPERIMENTAL RESULTS

3.1. Implementation

We implemented this approach in H.264/AVC JM 17.21. Be-

fore encoding each frame, we first compute the denominator

of the scaling to be applied to the original Lagrange multiplier

used in JM, as in (11); this involves computing the variance

of the source pixels within each MB. Then, before encoding

each MB, the Lagrange multiplier to be used is scaled as in

(11).This scaled Lagrange multiplier is then used in all RDO

processes such as mode-decision, RD-optimized quantization

and motion estimation. No other changes to the encoder soft-

ware is necessary.

1Available from http://iphome.hhi.de/suehring/tml/
download/

Table 1: BD-Rate (%) results for all-intra setting

Sequence BD-Rate BD-Rate Encoding

(SSIM) (PSNR) Time

silence cif -5.7% 3.2% 100%

flower cif -6.9% 0.5% 99%

bus cif -9.3% 2.3% 100%

foreman cif -7.0% 2.8% 98%

salesman qcif -5.4% 2.6% 100%

carphone qcif -3.9% 2.2% 99%

container qcif -9.9% 1.7% 99%

Average -6.9% 2.2% 99%

3.2. Experimental setup

We applied the proposed approach to encoding of 4 CIF

test sequences (“silence cif”, “flower cif”, “bus cif”, “fore-

man cif”) and 3 QCIF test sequences (“salesman qcif”, “car-

phone qcif”, “container qcif”). We used 3 different con-

figurations that target different applications: all-intra frame

encoding for use in high quality digital cinema application,

random access for use in storage applications, and low-delay

for use in video conferencing applications. In the all-intra

frame encoding, all the frames are encoded as intra pic-

tures without any temporal prediction. For random access

configurations, we use a 8-frame hierarchical B-picture struc-

ture, with an I-picture approximately every second. In the

low-delay configuration, only the first frame is coded as an

I-picture, with the rest being P-pictures. The encoding was

carried out over a range of QPs: 20, 25, 30 and 35.

To help us understand coding performances, we will show

BD-rate [12] figures for both PSNR and SSIM distortion met-

rics with respect to JM 17.2 without any modifications, but

using the same encoding configuration. A negative BD-rate

implies that the proposed approach brings coding gains, while

a positive BD-rate implies that the proposed approach brings

coding loss. These numbers can be interpreted as the aver-

age rate decrease/increase with respect to the baseline while

maintaining the same PSNR or SSIM quality. We will also

show the encoding time of the proposed approach as a per-

centage of the baseline in order to understand the complexity

of the proposed approach.

3.3. Results

Tables 1, 2 and 3 show the results for the all-intra, random

access and low-delay encoding configurations respectively.

The key observation is that for the same SSIM, the pro-

posed approach can give significant coding gains ranging

from 3% to 18%. The average rate gains for all-intra, ran-

dom access and low-delay encoding configurations are 6.9%,

7.9% and 11.0% respectively. On the other hand, for the same

PSNR, the proposed approach suffers some coding loss of up
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Table 2: BD-Rate (%) results for random access setting

Sequence BD-Rate BD-Rate Encoding

(SSIM) (PSNR) Time

silence cif -4.8% 2.9% 100%

flower cif -10.3% 0.8% 99%

bus cif -12.0% 1.5% 99%

foreman cif -6.3% 2.4% 99%

salesman qcif -8.1% -0.2% 100%

carphone qcif -4.9% 3.0% 99%

container qcif -9.3% 4.0% 100%

Average -7.9% 2.1% 99%

Table 3: BD-Rate (%) results for low-delay setting

Sequence BD-Rate BD-Rate Encoding

(SSIM) (PSNR) Time

silence cif -3.8% 6.2% 100%

flower cif -15.3% -0.3% 100%

bus cif -17.7% -1.9% 100%

foreman cif -9.1% -3.5% 99%

salesman qcif -12.7% 5.3% 100%

carphone qcif -3.4% 5.3% 100%

container qcif -14.6% 2.3% 101%

Average -11.0% 1.9% 100%

to 5%, with an average loss of 2.2%, 2.1% and 1.9% for all-

intra, random access and low-delay encoding configurations

respectively. This is to be expected, since the optimization in

the proposed approach is done with respect to SSIM, and is

no longer optimal with respect to the PSNR metric. Finally,

the encoding time of the proposed approach does not show

any significant adverse impact, and is about the same as the

baseline. This is unlike previous SSIM-based RDO methods,

in which the computation of SSIM for all RD cost and the es-

timation of the Lagrange multiplier would lead to significant

increase in encoding time.

4. CONCLUSIONS

In this paper, we have described a simple way to incorporate

the use of SSIM into RDO in order to optimize video encod-

ing to target perceptual quality instead of MSE. This can be

done by scaling the Lagrange multiplier in RDO based on lo-

cal statistics. We have implemented the proposed approach

and demonstrated that it achieves substantial coding gains of

up to 18% while maintaining the same perceptual quality as

the H.264/AVC reference software encoder as measured by

SSIM. At the same time, there is no increase in encoding com-

plexity. This would be very useful for video encoder practi-

tioners who wish to achieve further compression gains while

maintaining the same perceptual quality at low cost.

In our current implementation, we only use the local vari-

ance of the luminance component in determining the adjust-

ments. This can be extended to incorporate the local variance

of the chrominance components by using a weighted average

of the luminance and chrominance components in (11). Fur-

thermore, when we compute the local variance, we might also

choose to compute it over a region that extends a number of

pixels from the current MB, in order to have more smoothly

varying Lagrange mulitplier over the frame.
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