
IMPROVED TEMPORAL TEXTURE COMPRESSION USING CAMERA MOTION
ESTIMATION

Aleksandar Stojanovic, Christian Müller and Moritz Knorr

Institut für Nachrichtentechnik
RWTH Aachen University

ABSTRACT

In this paper, we introduce a new algorithm for continuous

estimation of camera motion and zoom. We show that this

method can be used to warp previously encoded frames into

the perspective of the frame that is currently encoded. In

particular, for so-called video or dynamic texture, that is,

sequences exhibiting some kind of temporal periodicity or

stationarity, a frame with a given temporal distance can be

warped and added into the reference picture buffer to com-

plement conventional reference frames. The rationale is that

with these sequences, frames, or parts of frames, tend to

reappear in a similar form after some time. We show that by

combining a specifically tailored method for frame warping

with exploitation of dynamic texture properties, bitrate sav-

ings surpassing the state-of-the-art can be achieved with a

recent version of the HM software.

Index Terms— Video coding, Video texture, Camera mo-

tion

1. INTRODUCTION

Video compression has witnessed a lot of progress in the past

decades and can now be considered as a relatively mature re-

search topic. Nevertheless, recently, a lot of new techniques to

further enhance compression efficiency have been presented,

some of which have been integrated into HM, the reference

software of the HEVC project [1]. An old idea that has never

really had a break-through in standardization is to allow mo-

tion models going beyond 2D translation, like in [2] where

an affine model is used, or a recent method presented at a

JCTVC standardization meeting [3], that warps frames from

the decoded picture buffer to match parts of the frame cur-

rently being encoded. The former method achieves most of its

compression improvements from a new interpolation method

and the advantage of using more complex motion is rather

marginal, while the latter only works for sequences with sim-

ple motion patterns, and therefore both were not considered

for adoption into the standard. The method we propose in this

This work was supported by the National Research Fund, Luxembourg,

under Grant 795405.

paper aims specifically at more complex sequences, in partic-

ular so-called dynamic or video textures [4, 5]. Previous work

[6, 7, 8, 9] has shown that for textures changing over time

like water, smoke, leaves in the wind or head-and-shoulder

sequences, that is, dynamic textures, special techniques for

in-the-loop prediction can improve the compression perfor-

mance. In this work, we reduce this model to saying that these

sequences are somehow cyclic, and focus on the task of cam-

era motion compensation. This paper is structured as follows:

in Section 2 we describe the general idea of our work, Sec-

tion 3 explains the camera motion algorithm and Section 4

describes the encoding scheme for the homographies. The

paper concludes with Section 5 which provides experimental

results.

2. OVERALL SYSTEM

2.1. Contributions of this work

In this work we introduce a method that allows the estimation

of camera pan and zoom between two successive I-frames by

deciding automatically when to chose a new key reference

frame from where to re-initialize the estimation. These key

frames need a good estimation w.r.t. the previous key frame

as any error occurring in this frame is carried over until the

end. Therefore, a special technique to refine the estimation

is introduced. Unlike in previous work, we use Levenberg-

Marquardt to minimize a functional depending on pixel val-

ues directly, which, to the best of our knowledge, has not been

reported previously. This set of new tools provides camera

motion and zoom estimation with a precision that renders us-

age in closed-loop video coding possible, especially for se-

quences where this task is particularly challenging, i.e. dy-

namic texture. We integrated these tools into the HM soft-

ware and were able to show that when exploiting the partially

cyclical nature of these sequences, the compression ratio can

be improved beyond the current state-of-the-art.

2.2. Enhanced video encoder

At its core, the method presented in this paper is rather sim-

ple. We continuously estimate camera motion and zoom in

829978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



a sequence. This information is encoded into the bitstream

and will be available at the decoder. Hence we can use this

information at the encoder for compression purposes. In prac-

tice, we use a long-term reference picture buffer and, with the

estimated camera motion and zoom information, we warp a

frame with a fixed time displacement into the perspective of

the frame that is currently encoded. This frame is used as a

substitute to the oldest reference frame in the decoded pic-

ture buffer and is therefore available for motion compensated

coding in the same way as conventional reference frames. The

same procedure has to be performed at the decoder, obviously

using camera motion parameters from the bitstream.

The rationale for using a long–term buffer is that previ-

ous work [8] has shown that for so-called dynamic or video

textures, frames or parts of frames tend to reappear in a sim-

ilar form. In its simplest form, this model would assume a

sequence to be cyclic, which explains our procedure. In this

work we focus on compensating effects from camera motion

and zoom, which are particularly difficult to handle for this

type of sequence.

Transform/
Quantization

Inverse
Transform

De-blocking &
Loop
Filter

Intra
Prediction

Motion
Compensation

Motion
Estimation

-

Mode
Decision

LTFW Algorithm

Long-term   
buffering

Frame warping

Inverse
Transform

IBDI off

TU

TU

PU

PU

PU

CU

Camera Motion
Estimation

Fig. 1. Overall concept of the proposed method.

3. CAMERA MOTION AND ZOOM
COMPENSATION

3.1. Basic principle

We introduced the basic principle of the method for camera

motion and zoom compensation in [9]. The technique proved

to be necessary for dynamic texture synthesis as the original

model from [4] does not take into account effects from camera

motion. Here we assumed that the view warping can be com-

pensated by applying a homography to each frame in the se-

quence. As this assumption turned out to be valid for the case

of the considered sequences containing dynamic textures, the

remaining problem was to determine the homography corre-

sponding to each frame with maximum accuracy. In a first

step, point correspondences between the frames were deter-

mined and then used for homography computation. In partic-

ular, it turned out that three factors are decisive for an accurate

homography estimation, that is, (a) a robust method like Least

Median of Squares has to be used for homography computa-

tion, (b) points on moving objects have to be excluded and

only static background points should be used and finally, (c)

point correspondences should be spatially well distributed in

order to attain an equally accurate registration over the entire

frame.

3.2. Continuous estimation

At the encoder, original frames are available so we apply a

technique we call continuous estimation to obtain a set of ho-

mographies that fully describe relative camera perspectives

between the frames. In fact, we begin with computing a ho-

mography between frame 0 and the following frames in the

sequences as can be seen in Figure 2 (a). For a relatively

short period, camera motion, zoom and/or moving foreground

object displacement is relatively small, such that the method

described in [9] was applicable. However, when entire se-

quences of 300 frames or more with substantial camera mo-

tion and high foreground activity are considered, the static

background portion of the frame may become so small that

registration becomes impossible. For this reason, our algo-

rithm selects new reference frames, which we termed key ref-
erence frames, from where warping is re-initialized in an au-

tomatic way. Re-initialization with a new key reference is

triggered every time one of the following three criteria falls

below a predefined threshold:

• Frame overlap: The percentage of the frame area vis-

ible in both views.

• Size of Background w.r.t. foreground: Percentage of

static background compared to moving foreground.

• Number of point correspondences: Number of corre-

spondences remaining in the set.

0,20

0 1 ... 20 21

20,22

#

(a) (b)

Fig. 2. (a) Example with key reference frames at frame 0 and

20. (b) Action of homography on corner points.

830



3.3. Subsequent refinement for key reference frames

Computation of camera motion beyond the limits of key ref-

erences can be done by simple matrix multiplication of ho-

mographies. It goes without saying that any error in these key

frames will be carried over to successive views. Hence a good

estimation for the latter is imperative. Our method separates

static background from foreground and therefore, background

in the reference and warped image should be identical in the

ideal case. In practice however, slight imprecision in the point

correspondence locations will lead to a squared error S that

we define by:

S(H) =
∣
∣IB − IWB (H)

∣
∣ , (1)

where H is the homography, IB are the pixel intensities of

background portions of the reference frame and IWB the in-

tensities of the warped frame. The idea is to slightly change

each entry of the homography and see how it affects S. The

difficulty is that every entry has a different influence on the

warped image, and to identify in what range each component

can be varied, a preliminary experiment is required, that is,

we need to determine the sensitivity of the homography with

respect to noise in the point correspondence locations used

for its computation. Figure 3 shows histograms for each of

the parameters of the normalized homography (in the sense

that the last entry is always equal to 1) for the case where we

added Gaussian noise to point correspondence locations and

computed multiple instances of similar homographies.

Now, to find iteratively a homography with minimal S,

the Levenberg algorithm is used. While it has been reported

in, e.g. [10], that this method can be used to minimize differ-

ent geometric distances, we successfully used it to minimize

pixel value differences. This is mainly due to the good ini-

tialization, as we only use the method for refinement. We

should mention that the two perspective parameters were too

sensitive, so the algorithm was only executed with the 6 up-

per entries of the matrix. The algorithm consists in finding

0.96 0.97 0.98 0.99
0

200

400

600

800

h
11

O
cc

ur
an

ce
s

−0.01 −0.005 0 0.005 0.01
0

200

400

600

800

h
12

O
cc

ur
an

ce
s

20 21 22 23
0

200

400

600

800

h
13

O
cc

ur
an

ce
s

−4 −2 0 2 4

x 10
−3

0

200

400

600

800

h
21

O
cc

ur
an

ce
s

0.96 0.97 0.98 0.99
0

200

400

600

800

h
22

O
cc

ur
an

ce
s

5.5 6 6.5 7 7.5
0

200

400

600

800

h
23

O
cc

ur
an

ce
s

−2 −1 0 1 2

x 10
−5

0

200

400

600

800

h
31

O
cc

ur
an

ce
s

−4 −2 0 2 4

x 10
−5

0

200

400

600

800

h
32

O
cc

ur
an

ce
s

0 0.5 1 1.5 2
0

5

10

x 10
4

h
33

O
cc

ur
an

ce
s

Fig. 3. Histograms of elements of homography matrix.

iteratively a δ that can be added to the elements of the ho-

mography. The equation to solve is given by:

(JTJ + λI)δ = −JTS, (2)

where the Jacobian can be computed using:

Ji =
S(H+Δhi Ei)− S(H−Δhi Ei)

2Δhi
. (3)

The step size Δhi = c∗σi is different for each entry hi of the

homography H and derived from the estimated standard de-

viation of the entries from the above mentioned Monte-Carlo

simulation, while c is a constant positive weighting factor.

To limit the computational complexity in this step we use

a pyramid based approach, i.e. starting from a down-sampled

and low pass filtered version of the images we refine the esti-

mate at each level. The procedure is only performed for key

reference frames, so that the overall computational complex-

ity remains limited and our algorithm remains fast compared

with the encoding time of the HM software.

4. HOMOGRAPHY CODING

Predicting frames in a scenario with camera motion renders

the coding of homography parameters necessary. A scheme

often used in this context is to code the motion vectors of

corner points of the image instead of the homography param-

eters. A homography is described by a 3× 3 matrix, however

it has only 8 degrees of freedom, hence a unique solution can

be found by solving a system of 8 equations. The latter can

be obtained by filling each of the 4 point correspondences ci,
c′i into the equation:

c′i = Hci. (4)

In other words, a homography is fully described by its action

on corner points as shown in the illustrative example of Figure

2 (b). From a coding point of view it is equivalent to transmit

either the homography matrix or the corner points c′i, or, more

precisely, it is sufficient to transmit the displacement xi =
c′i − ci. As the former are floating point values and the latter

displacement vectors that can be coded in a similar fashion as

motion vectors from prediction units, we opt for the latter.

At the encoder, the four displacement vectors xi are coded

using a predictive coding scheme as shown in Figure 4. The

rationale is that the displacement between consecutive frames

varies only slightly. In practice, camera motion is usually

smooth and zoom is constant over a certain time period, facts

that make the usage of the proposed encoder a reasonable

choice. For each component x and y of x = (x y)T and

each point xi, an individual encoder is used. A precision of

.1 pixel is used in the practical implementation. The decoder

is simply the counterpart to figure 4.

831



Fig. 4. Encoder for transmission of corner displacement en-

coding.

5. RESULTS AND CONCLUSION

For experimental results we used the HM2.2 software with

and without our additional tool. The encoder settings are

listed in Table 1. The temporal displacement between the cur-

rent and warped frame was fixed at 30 frames. Rate savings

are listed in Table 2. In particular, we achieve bitrate sav-

ings for the Sheriff and ThemePark sequences which mainly

consist of water surface. Videos of water are considered typ-

ical instances of dynamic texture as similar patterns reappear

after some time. In PartyScene, chaotically moving and par-

tially periodic elements may be regarded as dynamic texture

in the broader sense. The gains for the Waterfall sequence can

be explained in part by the dynamic texture in the center and

in part by the precise warping of rigid texture (wood) in the

scene. A discussion of the latter effect is beyond the scope

of this paper. As no gains for this type of sequences were

reported in [3], where many homographies in the short-term

were allowed, and only a very basic method for homogra-

phy computation was used, we can conclude that this method

complements work done so far on camera motion and pro-

vides more gains, however requiring a large frame buffer for

the temporal distance. In future, we want to test the method

with a broader set of sequences and other encoder configura-

tions, but the latter will require some adaptations in the code.

6. REFERENCES

[1] http://hevc.kw.bbc.co.uk/svn/jctvc-a124/.

[2] H. Lakshman, H. Schwarz, and T. Wiegand, “Adaptive motion
model selection using a cubic spline based estimation frame-
work,” in Image Processing (ICIP), 2010 17th IEEE Interna-
tional Conference on, sept. 2010, pp. 805 –808.

[3] http://wftp3.itu.int/av-arch/jctvc-
site/2010 10 C Guangzhou/JCTVC-C033.doc.

[4] G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto, “Dynamic
Textures,” International Journal of Computer Vision, vol. 51,
no. 2, pp. 91–109, 2003.

PARAMETER VALUE

GOP STRUCTURE IBBB

QP I 22, 27, 32, 37

QP B 23, 28, 33, 38

FRAME RATE 30 FRAMES/S

NUMBER REFERENCE FRAMES 4

SEARCH RANGE 64 PIXELS

MAXIMUM CODING UNIT WIDTH 64 PIXELS

MAXIMUM CODING UNIT HEIGHT 64 PIXELS

MAXIMUM CODING PARTITION DEPTH 4

MAXIMUM TU TRANSFORM SIZE 25

MINIMUM TU TRANSFORM SIZE 22

INTER TU MAXIMUM DEPTH 2

INTRA TU MAXIMUM DEPTH 1

ENTROPY CODING MODE LCEC

HIERARCHICAL B CODING OFF

DEBLOCKING LOOP FILTER ON

MERGE MODE ON

ADAPTIVE LOOP FILTER OFF

Table 1. HM2.2 Encoder setup.

Sequence Res. ΔPSNR ΔRate
WATERFALL CIF 1.59 dB -33.1 %

THEMEPARK 480X360 0.11 dB -3.0 %

PARTYSCENE WQVGA 0.18 dB -3.8 %

SHERIFF 360P 0.22 dB -7.4 %

Average 0.525 dB -11.8 %

Table 2. Bjontegaard Delta results for HM2.2. Sheriff and

PartyScene were down-sampled with factor two. ThemePark

was cropped and camera motion added.

[5] Arno Schödl, Richard Szeliski, David H. Salesin, and Irfan
Essa, “Video textures,” in SIGGRAPH ’00, New York, NY,
USA, 2000, pp. 489–498.

[6] A. Stojanovic, M. Wien, and J.-R. Ohm, “Dynamic Texture
Synthesis for H.264/AVC Inter Coding,” in Proceedings of the
IEEE International Conference on Image Processing, October
2008, pp. 1608–1612.

[7] A. Stojanovic, M. Wien, and T.K. Tan, “Synthesis-in-the-Loop
for Video Texture Coding,” in Proceedings of the IEEE Inter-
national Conference on Image Processing, November 2009.

[8] Aleksandar Stojanovic and Philipp Kosse, “Extended dynamic
texture prediction for H.264/AVC inter coding,” in Proceed-
ings of the IEEE International Conference on Image Process-
ing, Hong Kong, People’s Republic of China, 2010.

[9] J. Ballé, A. Stojanovic, and J.-R. Ohm, “Models for static and
dynamic texture synthesis in image and video compression,”
Selected Topics in Signal Processing, IEEE Journal of, vol. PP,
no. 99, pp. 1, 2011.

[10] Richard Hartley and Andrew Zisserman, Multiple View Ge-
ometry in Computer Vision, Cambridge University Press, New
York, NY, USA, 2003.

832


