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ABSTRACT

In this paper a graph-based transform is proposed as an alternative
to the discrete cosine transform. An image or video signal is rep-
resented as a graph signal, where the graph is generated so as not
to cross an image edge in a local region, i.e., square block. Then,
spectral representation of graph signal is used to form transform ker-
nels by finding eigenvectors of Laplacian matrix of the graph. This
method requires to include additional information, i.e., edge map or
adjacency matrix, into a bitstream so that a decoder can regenerate
the exactly same graph used at an encoder. The novelty of this pa-
per includes finding the optimal adjacency matrix and compressing
it using context-based adaptive binary arithmetic coding. Coding
efficiency improvement can be achieved when an image block con-
tains arbitrarily shaped edges by applying the transform not across
the edges. The proposed transform is applied to coding depth maps
used for view synthesis in a multi-view video coding system, and
provides 14 % bit rate savings on average.

Index Terms— transform coding, image coding, video com-
pression

1. INTRODUCTION

DCT has been widely used for block based image and video com-
pression. It provides an efficient way to represent the signal both
in terms of coding efficiency and computational complexity as an
orthogonal 2-D separable transform. However, it is known to be in-
efficient for coding blocks containing arbitrary shaped edges. For
example, if DCT is applied to a block containing an object bound-
ary which is neither a horizontal nor a vertical line, e.g., diagonal or
round shape, or mixture of these, the resulting transform coefficients
tend not to be sparse and high frequency components can have sig-
nificant energy. This leads to higher bitrate and potentially highly
visible coding artifacts if operating at low rate.

To solve this problem variations of DCT have been proposed,
such as shape adaptive DCT [1], directional DCT [2, 3, 4], spatially
varying transform [5, 6], variable block-size transform [7], direction-
adaptive partitioned block transform [8], etc., in which the transform
block size is changed according to edge location or the signal sam-
ples are rearranged to be aligned to the main direction of dominant
edges in a block. Karhunen-Loève transform (KLT) is also used
for shape adaptive transform [9] or intra prediction direction adap-
tive transform [10]. These approaches can be applied efficiently to
certain patterns of edge shapes such as straight line with preset ori-
entation angles; however, they are not efficient with edges having
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arbitrary shapes. Platelets [11] are applied for depth map coding
[12], and approximate depth map images as piece-wise planar sig-
nals. Since depth maps are not exactly piece-wise planar, this repre-
sentation will have a fixed approximation error.

Wavelet based approaches have also been studied, including
curvelets [13], bandelets [14], contourlets [15, 16], directionlets
[17], etc. Edge-adaptive wavelets have been applied for depth map
coding by using shape-adaptive lifting [18] and switching between
long filters in homogeneous areas and short filters over the edges
[19]. Graph-based wavelets [20, 21] are proposed to preserve edge
information in a depth map [22]. All these approaches try not to
apply transform across the edge; however, these are not amenable to
a block based coding architecture, which has been widely adopted
in international standards for image and video coding such as JPEG,
MPEG-2, MPEG-4, H.264/AVC, etc.

To solve these problems, we have proposed the graph based
transform (GBT) as an edge adaptive block transform that represents
signals using graphs, where no connection between nodes (or pix-
els) is set across an image edge. Note that while “edge” can refer
to a link or connection between nodes in graph theory, we only use
the term “edge” to refer an image edge to avoid confusion. In [23]
we showed that this method can work well for depth map coding,
which consists of smooth regions with sharp edges between objects
in different depths.

However, our previously proposed approach [23] requires a sig-
nificant bitrate to code edge map information, which restricts the per-
formance of the transform. Also, it does not work well with images
having weak edges. Therefore, optimizing the transform by consid-
ering edge strength and bitrate to code the edge map is key to achieve
performance improvement. In this paper, we propose a method to
find the optimal transform to improve coding efficiency by finding
optimal adjacency matrix which can be directly used to derive the
transform instead of using edge detection method. We also propose
an efficient method for coding the adjacency matrix using context-
based adaptive binary arithmetic coding (CABAC) [24]. Experimen-
tal results shows that the proposed method can work well with var-
ious kind of depth maps both containing strong and weak edges.
Consequently, the number of blocks coded by GBT has greatly in-
creased, and bitrate reduction of 14 % on average is observed.

The rest of the paper is organized as follows. In Section 2, the
proposed GBT is described, i.e., how to construct a transform. In
Section 3 it is described how to apply GBT for image coding, fol-
lowed by experimental results and conclusions in Sections 4 and 5,
respectively.
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2. CONSTRUCTION OF GRAPH BASED TRANSFORM

The transform construction procedure consists of three steps: (i)
edge detection on a residual block, (ii) generation of a graph from
pixels in the block using the edge map (iii) construction of transform
matrix from the graph.

In the first step, after the intra/inter prediction, edges are de-
tected in a residual block based on the difference between the neigh-
boring residual pixel values. A simple thresholding technique can be
used to generate the binary edge map. Then, the edge map is com-
pressed and included into a bitstream, so that the same transform
matrix can be constructed at the decoder side.

In the second step, each pixel position is regarded as a node
in a graph, G, and neighboring nodes are connected either by 4-
connectivity or 8-connectivity, unless there is edge between them.
From the graph, the adjacency matrix A is formed, where A(i, j) =
A(j, i) = 1 if pixel positions i and j are immediate neighbors not
separated by an edge. Otherwise A(i, j) = A(j, i) = 0. The ad-
jacency matrix is then used to compute the degree matrix D, where
D(i, i) equals the number of non-zero entries in the i-th row of A,
and D(i, j) = 0 for all i �= j.

In the third step, from the adjacency and the degree matrices,
the Laplacian matrix is computed as L = D − A [25]. Then, pro-
jecting a signal G onto the eigenvectors of the Laplacian L yields
a spectral decomposition of the signal, i.e., it provides a “frequency
domain” interpretation of the signal on the graph. Thus, a transform
matrix can be constructed from the eigenvectors of the Laplacian
of the graph. Since the Laplacian L is symmetric, the eigenvector
matrix E can be efficiently computed using the well-known cyclic
Jacobi method [26], and its transpose, ET, is taken as GBT matrix.
Note that the eigenvalues are sorted in descending order, and corre-
sponding eigenvectors are put in the matrix in order. This leads to
transform coefficients ordered in ascending order in frequency do-
main.

A problem in this three-step approach is how to find an optimal
edge map in the first step in order to get the best transform in the
third step. Considering that an edge map is used to generate an ad-
jacency matrix in the second step, it will be easier to optimize the
adjacency matrix directly to solve this problem. Therefore, we pro-
pose to combine the first and second steps. Instead of generating
the edge map explicitly, we can find the best transform kernel for the
given block signal by searching the optimal adjacency matrix. When
4-neighbor connectivity is considered in a 4 × 4 block, there are 12
horizontal edges and 12 vertical edges. Accordingly there are 224

possible adjacency matrices.
Instead of searching the whole space to find the most optimal

adjacency matrix, a greedy algorithm can be applied. By defining
a cost function, the cost for including each edge can be calculated.
Then, the number of edges are increased from zero to 24, leading
to stages 0 to 24. At stage 0 the cost is calculated when there is
no edge. At stage 1 the cost is calculated for each edge location by
setting one of them as an edge at a time. The one with the minimal
cost is selected as the optimal edge at stage 1. At the next stage, the
edge found in the previous stage is included, and an additional edge
is found as in the stage 1 excluding the edge found in stage 1. In
this manner, at stage k, one additional edge is included in addition
to all the edges found until stage k − 1. We can calculate the cost
for each stage by including an additional edge, and choose the best
stage which results in the minimal cost.

Then, this will give the optimal adjacency matrix. Note that
this would be less optimal than the adjacency matrix found by full
search in terms of coding efficiency. However, this will be more

optimal than full search approach or edge map based approach con-
sidering tradeoff between computational complexity to calculate the
adjacency matrix and coding efficiency.

The equations below show the cost function to search the opti-
mal adjacency matrix using the greedy algorithm. First, we define a
coefficient cost function as

Costcoeff = f
T
Lf =

1

2

∑

i,j

aij(fi − fj)
2
, (1)

where f is a vector of the input depth map block, fi is the i-th el-
ement in this vector, aij is the corresponding element in the adja-
cency matrix. Then, we divide this with the square of quantization
step size, Q, and take log base two to get the coefficient bitrate as

Costcoeff rate = log2(

∑
i,j aij(fi − fj)

2

2Q2
). (2)

The final cost is represented as the sum of the coefficient bitrate and
edge bitrate as

Cost = Costcoeff rate + kCostedge rate

= log2(

∑
i
aij(fi − fj)

2

2Q2
) + k · m, (3)

where m is the bitrate to code the adjacency matrix, which can be
represented using 24 bits and further compressed using entropy cod-
ing. The scaling factor k can be applied to balance the coefficient
rate and edge rate.

Transform coefficients are computed as follows. For an N ×
N block of residual pixels, form a one-dimensional input vector
x by concatenating the columns of the block together into a sin-
gle N2 × 1 dimensional vector, i.e., x(Nj + i) = X(i, j) for all
i, j = 0, 1, ..., N−1. The GBT transform coefficients are then given
by y = ET · x, where y is also an N2 × 1 dimensional vector.

In terms of computational complexity, it can be noticed that the
proposed approach has O(N2) complexity, while the full search
requires O(2N ). Therefore, significant complexity reduction is
achieved. Compared to the edge detection method, which can be re-
garded as having O(N) complexity, the proposed method has higher
complexity. However, it would be difficult for the edge detection
method to get a good result with a fixed threshold value. Therefore,
the proposed method using the greedy algorithm can provide the
optimal solution at a reasonable complexity.

3. IMAGE AND VIDEO COMPRESSION USING GBT

In this section, we describe how GBT is applied for image and video
compression. Usually transform coding is performed on the residual
signal after prediction coding such as spatial prediction of temporal
prediction, followed by quantization. GBT can be also applied to the
residual signal, and the transform coefficients can be quantized as
other transform coding methods. We use a uniform scalar quantizer
for transform coefficients followed by entropy coding. Unlike DCT
which uses zigzag scan of transform coefficients for entropy coding,
GBT does not need any such arrangement since its coefficients are
already arranged in ascending order in frequency domain.

To achieve the best performance one can choose between DCT
and GBT for each block. For example for each block the rate-
distortion (RD) cost can be calculated for both DCT and GBT, and
the best one can be selected. Overhead indicating the transform that
was chosen can be encoded into the bitstream for each block, and
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the adjacency matrix information is provided only for blocks coded
using GBT.

We propose an efficient way to compress the adjacency matrix
using CABAC. For a given 4 × 4 block the adjacency matrix can
be formed considering 4 neighbor connectivity. Though the matrix
size is 16 × 16, only 24 elements can be changed according to the
connectivity, and other elements will have fixed values. These ele-
ments have binary value already, i.e., connected or not. However,
better performance can be achieved if correlation between links are
exploited. Fig. 1 shows nodes and links which can affect the ad-
jacency matrix, where 1 to 12 links are related to horizontal edges
as shown in the left image, and 13 to 24 links are related to vertical
edges as shown in the right image.

Fig. 1. Adjacency matrix coding for 4 × 4 block with 4 neighbor
connectivity. Circle denotes node or pixel and solid line represents
link between nodes. Left image shows links related to horizontal
edges, and right image shows links related to vertical edges.

From the typical node structure of a square image block, it
can be inferred that there will be high correlation among links in
same horizontal or vertical line, i.e., {1, 2, 3}, {4, 5, 6}, {7, 8, 9},
{10, 11, 12} for horizontal lines, and {13, 14, 15}, {16, 17, 18},
{19, 20, 21}, {22, 23, 24} for vertical lines. However, the first link
in each group cannot use the correlation. Therefore, we set up two
contexts according to link locations. For links 1, 4, 7, 10, 13, 16, 19,
and 22, which are the first nodes in each line, context is set to zero.
In this case, no prediction is performed to make binary decisions,
so-called bins, and bin is set to one if connected, and set to zero if
not. For the other links, context is set to one, and bin is set to zero if
its left (in case of horizontal line links) or upper (in case of vertical
line links) link has same connection status (i.e., connected or not
connected) as the current link, otherwise bin is set to one. Then,
bins are compressed using binary arithmetic coding.

4. EXPERIMENTAL RESULTS

In this section, the performance of GBT is evaluated using various
3-D video test sequences, which consist of left and right reference
view video along with their depth video. The intermediate view
is synthesized using the MPEG view synthesis reference software
(VSRS) 3.0 [27] with the compressed depth video either by using
conventional DCT based transform or the proposed GBT. The im-
plementation is based on H.264/AVC reference software JM17.1. 15
frames are coded for each sequence, where the first frame is coded
as intra frame and the others as inter frame. No adaptive rounding
control is applied for either DCT or GBT, and a fixed rounding off-
set of 1/3 is used. The transform mode is signaled for each 4 × 4
block to indicate the best transform between the H.264/AVC integer
transform which is a modification of DCT and the proposed GBT.

GBT kernel is generated in two ways. First, normal edge detection
scheme is applied to detect edges in a block. In this case, for the
blocks coded using GBT, the edge map is losslessly encoded and
sent to the decoder. Secondly, instead of finding edge map, we find
optimal adjacency matrix using the method described in Section 2,
where the adjacency matrix is losslessly encoded and sent to the de-
coder. We compare these two methods to the case where the depth
maps are encoded using H.264/AVC.

Fig. 2 shows the RD curve comparisons between the proposed
methods and H.264/AVC, where the bitrates for GBT cases include
transform selection bits and edge map or adjacency matrix informa-
tion bits in addition to two depth map coding bits. QP values of 24,
28, 32, and 36 are used to encode depth maps. PSNR is calculated
by comparing the rendered view without any compression of depth
maps as the reference and the synthesized video using the decoded
depth maps [28]. Note that in both cases, decoded video is used for
view synthesis to measure the distortion due to depth map compres-
sion.

(a) Book Arrival

(b) Mobile

Fig. 2. RD curve comparison between GBT and H.264/AVC, where
GBT is formed using edge detection or by finding optimal adjacency
matrix (x-axis: bitrate to code left and right depth maps and edge
map or adjacency matrix information in case of GBT, y-axis: Y
PSNR of the synthesized intermediate view): (a) Cafe (b) Mobile.
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From the RD curves in Fig. 2, it can be noticed the GBT
generated using optimal adjacency matrix performs better than
H.264/AVC, while the performance of the GBT generated using
edge detection scheme lies in the middle. It is observed that signif-
icant amount of bitrate saving can be achieved by GBT along with
PSNR improvement. The bitrate savings increase as overall bitrate
increases. This is because more blocks are chosen to be coded
using GBT at high bitrates, since the portion of additional bits for
adjacency matrix in total bitrate reduces. It can be also noticed that
different performance gain is achieved in each test sequence. The
performance of GBT depends on the number of edges in a frame, and
the edge strength. If there is large amount of noise around an object
boundary, GBT may not provide much gain over DCT. Therefore,
large gain can be achieved for sequences containing many strong
edges, such as Mobile and Cafe. In addition, the performance also
can be affected by sensitivity of view synthesis procedure to depth
map quality as analyzed in [29]. All the results for 10 test sequences
are given in Table 1, where the coding efficiency is represented
using BD-bitrate (BDBR) [30]. Note that minus sign means bitrate
reduction.

Table 1. BD-bitrate results of GBT compared to H.264/AVC.

Sequence
Bitrate reduction (BDBR) (%)

GBT (edge map) GBT (optimal A)

Cafe -12.6 -20.7
Newspaper -1.9 -6.4

Book Arrival -17.1 -15.7
Balloons -1.8 -7.1

Champagne Tower -2.1 -9.8
Kendo -1.3 -3.9
Mobile -16.4 -24.0
Car Park -15.4 -19.1

Hall -4.4 -6.9
Street -13.9 -24.6

Average -8.7 -13.8

5. CONCLUSIONS AND FUTURE WORK

We have proposed a new transform coding method for image and
video compression based on a spectral representation of a graph sig-
nal. GBT is applied in a hybrid manner for each block, so that best
transform between GBT and DCT can be selected to achieve best RD
performance. We also have proposed a method to find an optimal
way to construct transform kernels using a greedy algorithm, and an
efficient method to compress adjacency matrix using CABAC. Ex-
perimental results shows coding efficiency improvement of 14 % on
average when it is used to compress depth map images. Future re-
search includes analysis of GBT performance and extension to gen-
eral image and video compression.
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