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ABSTRACT 
 
A multiple color-filter aperture (MCA) camera can provide 
depth information as well as color and intensity in the 
single-camera framework, where the MCA generates 
misalignment between color channels depending on the 
distance of a region-of-interest. In this paper, we present a 
single camera-based estimation of the full depth map using 
the color shifting property of the MCA. For estimating the 
color shifting vectors (CSVs) among red, green, and blue 
color channels, edges are extracted at each color channel. At 
the edge, we estimate CSVs using normalized cross 
correlation combined with color shifting mask map. A full 
depth map is then generated by depth interpolation using the 
matting Laplacian method from sparsely estimated CSVs at 
an edge location. Experimental results show that the 
proposed method can not only estimate the full depth map 
but also correct the misaligned color image to generate 
photorealistic color images using a single camera equipped 
with MCA. 

Index Terms— Depth estimation, computational 
camera, normalized cross correlation, depth interpolation, 
3D image  acquisition 
 

1. INTRODUCTION 
 
Various approaches to estimating three-dimensional (3D) 
depth information have been extensively studied for the past 
several decades because of its broad applications in areas 
such as robot vision, intelligent visual surveillance, 3D 
image acquisition, and intelligent driver assistant systems. 

Most conventional depth estimation methods have 
relied on either multiple images such as stereo vision or on 
additional cues such as shading, focusing, and motion. 
Stereo matching is a depth estimation method using 
binocular disparity generated by a stereo camera. In spite of 
many advantages, it has a fundamental limitation that a pair 
of images of the same scene should be acquired by two 
cameras with both temporal and spatial synchronization [1]. 

As an alternative to binocular systems, monocular 
methods have also been studied. Depth from defocus is a 
single camera based depth estimation that measures the 
amount of defocus blur from a pair of images with different 
focus settings on the same scene. However, this approach is 
limited  to still photography because a fixed camera view is 
required for taking multiple defocused images [2]. Zhuo [3] 
has used a single defocused image for depth estimation by 
considering the amount of blur measured by using the 
Gaussian gradient ratio at an edge as depth. However, it has 
the ambiguity problem between defocus and motion blurs. 

Recently, various types of computational cameras have 
been developed to acquire additional modalities such as 
depth and light field that cannot be obtained with a 
conventional digital camera. A computational camera uses 
unconventional optics and software to produce new form of 
visual information. In combination with digital signal 
processing algorithms, these cameras have been used to 
solve a variety of imaging applications including refocusing, 
increased dynamic range, depth-guided editing, variable 
lighting, and reflectance reduction [4].  

The multiple color-filter aperture (MCA) camera has 
been proposed for single camera-based multifocusing and 
depth estimation. The MCA is inserted between the lens and 
the imaging sensor to provide geometric information of an 
object from the color shifting property of the color filter 
array. Based on the MCA configuration, E. Lee has 
proposed a multi-focusing method using region-based depth 
estimation [5], and S. Lee has estimated the depth of an 
object by tracking the region-of-interest [6]. 

 

 

Fig. 1.  The proposed MCA camera-based depth estimation 
system in the single-camera framework. 
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In this paper, we present the MCA camera-based 
estimation of the full depth map using matching among 
color channels and depth interpolation as shown in Fig. 1. 

Although the MCA camera provides depth-dependent 
shifting or spatial disparity among color channels, 
conventional matching algorithms cannot easily estimate the 
spatial disparity because color channels have different 
intensity levels. To address  this problem, we extract edge 
information within each color channel and estimate the 
color shift vectors (CSVs) between the red and the green 
(R-G) channels and between the red and the blue (R-B) 
channels within the edge regions. To estimate the color shift 
vectors, a normalized cross correlation (NCC) is used, 
which is a fast block matching method [7]. In addition, an  a 
priori generated color shifting mask map (CSMM) is used to 
incorporate  a feasibility constraint. The full depth map is 
then generated by propagating the sparsely estimated depth 
that is obtained from the CSVs within the edge regions to 
the entire image. The matting Laplacian is used for depth 
interpolation from the sparse depth map [3][8]. 

Experimental results show that the proposed method 
can not only estimate the full depth map but also correct 
color misalignment using the MCA-based single camera. 
 

2. PRINCIPLE OF THE MCA: A REVIEW 
 

The principle of the MCA [5,6] is briefly reviewed in 
this section. The aperture of an optical system is the opening 
that adjusts the amount of light entering the camera. The 
center of an aperture is generally aligned with the optical 
axis of the lens, and the convergence pattern on the image 
plane will form either a point or a circular region depending 
on the distance of the object from the plane of focus. When 
the center of the aperture is not aligned with the optical axis, 
the convergence point will be shifted away from the optical 
axis by an amount that is a function of the distance of the 
object from the plane of focus of the camera. The MCA 
camera has red (R), green (G), and blue (B) filters that allow 
light to enter the camera through an aperture that is off the 
at different locations in the optical plane. The main 
advantage of the MCA camera is that it provides additional 
depth information that can be estimated from the direction 
and amount of color deviation from the optical axis. optical 
axis of the camera. Each filter thus focuses the light. 

 

3. COLOR SHIFTING PROPERTY BASED FULL 
DEPTH MAP ESTIMATION 

 
In a color image acquired by the MCA camera, CSVs 
between R-G and R-B channels are estimated within the 
edge regions by NCC combined with CSMM. A  full depth 
map is then generated using matting Laplacian-based depth 
interpolation of the sparsely estimated depth. 
 
3.1. Sparse depth map estimation 
 

For the initial sparse depth map estimation, we use 
normalized cross-correlation for fast block matching [7].  
Specifically, with  

1
( , )f x y  a block in the red color channel 

and 
2
( , )f x y   a block in the green or blue color channel, 

then the NCC is given by 
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which can be efficiently evaluated using the FFT. 
The disparity measured by edge-based NCC is 

vulnerable to error because of erroneously detected edges 
and different intensity level between the color channels. To 
obtain a more accurate disparity estimate,  we apply an a 
priori constraint on the feasible pattern of CSVs, which 
enforces the color shifting property of the MCA in the form 
of a mask called CSMM. 

 

 

 
Figure 3 shows the color shifting property of the MCA, 

where three apertures are located at vertices of the 
Fig. 2. The convergence patterns of the CSM according to
objects at different distances. 

(a) Geometric configuration 
of the MCA 

(b) Color shifting property 
based on the red channel 

(c) CSMM for R-G channels (d) CSMM for R-B channels
Fig. 3. Color shifting property of the MCA configuration
and the Color Shifting Mask Map. 
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equilateral triangle as shown in Fig. 3(a). Figure 3(b) shows 
the movement in the  green and blue channels relative to the 
read channel when  an object moves away from a position 
within the plane of focus. Based on the color shifting 
property, CSMM is generated as shown in Figs. 3(c) and 
3(d), and the CSV is estimated by maximizing the NCC 
subject to the CSMM constraint as follows: 

 

 
,

( , ) arg max ( , ),  subject to ( , ) 1
N

u v
CSV x y C u v CSMM u v (2) 

In addition to the inherent color shifting property, we 
can select the CSV containing higher matching rate out of 
the two from R-G and R-B channels. The depth of a point at 
( , )x y  is finally determined as 

 2 2( , ) ( )D x y sign v u v  (3) 
where ( , )u v  represents the CSV estimated at ( , )x y . 
 
3.2. Generation of the full depth map 
 

Given the sparse depth map within the edge regions,  it 
is then necessary to fill in the rest of the image by depth 
interpolation for generating the full depth map. The 
proposed depth interpolation is inspired by the matting 
Laplacian, which is used for recovering the sparse depth 
map in single defocused image by Zhuo [3][8]. 

Let d̂  and d  be the sparse and the full depth maps, 
respectively. The depth interpolation is performed by 
minimizing the following energy function 
 ˆ ˆ( ) ( ) ( )T TE d d Ld d d A d d  (4) 
where L  denotes the matting Laplacian matrix, and A  
represents a diagonal matrix whose element 

ii
A  is 1 if the 

i -th pixel is an edge, and 0 otherwise. The constant  is a 
parameter that controls the effect between the fidelity to the 
sparse depth map and smoothness of interpolation. L  is 
defined as 
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where ij  and U  represent the Kronecker delta function 

and a 3x3 identity matrix, respectively. In addition, k  and 

k  are the mean and covariance matrix of the colors within 

window kw , iI  and jI  are the colors of the input image I  
at pixels i and j  respectively,  denotes a regularization 

parameter, and kw  is  the size of window kw . The closed-
form solution for minimizing (4) is given as 
 

 1 ˆ( )d L A Ad  (6) 

 

For further compensating erroneously interpolated 
depth, the image is segmented using mean-shift 
segmentation [9]. The interpolation within regions where 
edge pixels are less than 1% is not performed . 

In order to align the color-shifted channels in the MCA 
camera, color channel registration is implemented to 
produce a color-aligned image. We can calculate the full 
CSVs using the trigonometric functions of the sine and the 
cosine and the angle of the color-filter aperture from the full 
depth map. The green and blue channels are shifted at each 
pixel by inverted CSVs in the entire image and the bicubic 
interpolation is implemented at the holes generated by pixel 
shifting.  
 

4. EXPERIMENTAL RESULTS 
 
For the experiment, we captured test images by the 
prototype MCA camera. We used Laligant’s edge detector 
that has noise cancellation function with very low 
computational complexity. Depth was estimated at edge 
location having values more than 0.04 in the normalized 
edge range from 0 to 1 [10].  takes a value in the range 
between 0.01 and 0.1, and the block size of the FFT for 
NCC is 32 32 . 

Figs. 4 and 5 show the results of the full depth map 
generation and the corresponding color channel registration.  
More specifically, results of the sparse depth estimation at 
edge location are shown in Figs. 4(b) and 5(b). The 
interpolated full depth maps are shown in Figs. 4(c) and 
5(c). Color misalignment of objects was successfully 
removed for obtaining photo-realistic images as shown in 
Figs. 4(d) and 5(d). Fig. 6 shows the result of depth 
estimation with more complex environment. The estimated 
depth of an object is affected by adjacent objects as shown 
in Fig 6(c). As a result, color channel registration fails in 
some occluded regions because depth continuity is not 
considered in the color channel matching step, which can be 
solved by applying the full depth map information. 

 
 

 
(a) Original MCA image (b) Sparse depth map

 
(c) Full depth map (d) Registration results

Fig. 4. Experimental results of the proposed method using 
the MCA camera. 
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5. CONCLUSION 

 
An MCA camera can provide depth information as well as 
color and intensity in the single-camera framework. In this 
paper, we proposed a single camera-based full depth map 
estimation using efficient color channel matching based on 
color shifting property of the MCA. For block matching 
between RGB color channels, edge was extracted at each 
color channel. The CSVs between R-G and R-B color 
channels are then estimated using FFT-based NCC 
combined with CSMM. The full depth map was generated 
by depth interpolation using the matting Laplacian method 
from sparsely estimated CSVs at edge. 

Experimental results show that the proposed method 
can not only estimate the full depth map but also correct 
color misalignment to make photo-realistic color images 
using the MCA camera.  
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(a) Original image (b) Sparse depth map 

 
(c) Full depth map (d) Registration results 

Fig. 5. Experimental results of the proposed method using
the MCA camera. 

 
(a) Original MCA image (b) Sparse depth map 

 
(c) Full depth map (d) Registration results 

Fig. 6. Experimental results of the proposed method using
the MCA camera with more objects than in Figure 5. 
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