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ABSTRACT

Infrared structured light sensors are widely employed for con-
trol applications, gaming, acquisition of dynamic and static
3D scenes. Recent developments have lead to the availabil-
ity on the market of low-cost sensors which prove to be ex-
tremely sensitive to noise, light conditions, materials, the sur-
face nature of the objects, and their distance from the cam-
era. As a matter of fact, accurate denoising and interpolation
strategies are needed.

The paper presents a quality enhancement strategy for
depth maps targeting low-cost IR structured light sensors.
The approach has been tested using the MS Xbox Kinect
device in both indoor and outdoor scenarios under different
light conditions.

Index Terms— interpolation, denoising, MS Kinect, 3D
scanning, structured light camera, infrared sensor.

1. INTRODUCTION

The recent availability of low-cost range cameras has shaken
the ICT world leading to a flourishing of new object recogni-
tion applications, human-computer interfaces, and acquisition
systems of dynamic 3D scenes. Time-of-Flight cameras [1],
structured light 3D scanners [2], multicamera systems allow
easy real-time acquisition of dynamic 3D scenes with both
static and dynamic elements.

Among these, the Xbox Kinect sensor [2], which includes
a standard RGB camera together with an infrared (IR) struc-
tured light scanner, has recently proved to be one of the most
widely-used sensors thanks to its versatility and the limited
cost (see Fig. 2). Unfortunately, despite the strong versatility
and the wide range of new applications that these IR devices
enable, the resulting depth signal is affected by a significant
amount of noise. One of the main reasons for this inconve-
nience is that for most of the acquired scene there is no control
over illumination, and therefore, IR sensors receive a signifi-
cant amount of radiation that has not been provided by the 3D
device itself. Depth sensors also present shot noise related to
the radiation, A/D conversion quantization noise, and thermal
noise. Moreover, the artifacts along object boundaries and the
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Fig. 1. Block diagram of the MS Kinect sensor.

limited resolution of the acquired depth maps utterly increase
the need for interpolating and denoising algorithms.

Several works have proposed novel denoising algorithms
to improve the quality of the acquired depth maps. One of
these considers the confidence values to denoise depth ac-
quired via a ToF camera, while other solutions rely on ex-
ploiting some side information obtained using a lateral color
camera [3]. In addition, other techniques are employed to in-
terpolate the depth maps in order to increase the resolution
and fill missing data [4].

The paper presents a joint denoise-interpolation algorithm
for MS Kinect sensor that aims at correcting the computed
depth values and interpolate the depth map on those points
where depth values are not available because of the noise con-
ditions. The approach relies on an initial denoising performed
by matching borders between range and color images. Then,
a segmentation of the color image is employed to interpolate
the data. Experimental results show that the quality of the
processed range image improves both in terms of number of
available points and quality of the warped views.

In the following, Section 2 presents the structure of the
MS Kinect sensor. Section 3 describes the denoising and in-
terpolation algorithm in detail, with Subsection 3.3 reporting
the depth correction algorithm and Subsection 3.6 showing
how segmentation is employed to interpolate data. Experi-
mental results (Section 4) and conclusions (Section 5) end the
paper.
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Fig. 2. Block diagram of the proposed algorithm.

2. A SHORT DESCRIPTION OF THE INFRARED
STRUCTURED LIGHT SENSOR

To test the proposed approach we employed the MS Xbox
Kinect device, a low-cost 3D sensor that is available on the
market and exploits an IR structured light camera to estimate
depth signals for the acquired scene. Despite this, the ap-
proach can be applied to any IR-based range camera. Fig-
ure 1 shows a simplified block diagram of the device. The
implemented IR depth sensor consists in an IR projector, an
IR CMOS camera, and a processing unit that controls them
and elaborates the acquired signal. An IR pattern of dots is
projected by the IR projector on the scene, and the IR CMOS
camera acquires the reflected pattern, which will be distorted
according to the geometry of the objects. The central process-
ing unit estimates the distance of each point from the depth
camera considering the distortions in the acquired dot pattern
with respect to the projected one. Color information is avail-
able as well since an RGB CMOS camera permits obtaining
a standard picture of the acquired scene.

This information permits building a pointcloud model of
the 3D scene by mapping depth pixels into color pixels with
a warping operation. The obtained 3D model presents sev-
eral artifacts depending on possible calibration errors, light-
ing conditions and errors in depth estimation by the process-
ing unit.

3. STRUCTURE OF THE PROPOSED ALGORITHM

The structure of the algorithm is summarized in Fig. 2 and
consists in two main operating blocks: a denoising unit that
corrects mismatches between the color image Iin and the
warped depth mapDin, and an interpolating strategy that fills
holes and missing pixels in the range image.

The following subsections will describe each step in de-
tail.

3.1. Clustering depth values

At the beginning of the depth correction strategy, the depth
values Din(x, y) (where (x, y) are the pixel coordinates) are
clustered into a set of 20 classesCk, k = 0, . . . , 19, according

to their distance from the IR camera using the k-means algo-
rithm. The choice of using k-means algorithm and computing
20 classes was driven by the need of having a low complexity
architecture .

Each class is characterized by its centroid and two thresh-
old values that defines the upper and the lower bounds for
depth values, that are grouped into the set of thresholdsTh.

3.2. Computing mismatches

At the beginning of the error correction unit, 3×3 Sobel oper-
ators Sx and Sy are applied to both the luminance component
L of the color image and the warped depth image Din. Let
Sx ∗L and Sy ∗ L be the convolutions of L with the horizon-
tal and the vertical Sobel operators, respectively, and Sx∗Din

and Sy ∗ Din be the convolution of the same operators with
Din. Then, the edge images EL and ED are computed as

EL = round

(
1

64

|Sx ∗ L|+ |Sy ∗ L|

2

)

ED = round

(
1

8

|Sx ∗Din|+ |Sy ∗Din|

2

) (1)

where quantization steps 8 and 64 have been chosen from a set
of experimental trials. Coordinates (x, y) have been omitted
for the sake of conciseness. For all the pixel positions (x, y)
such thatDin(x, y) is not valid, ED(x, y) is set to 0.

In a second step, the mismatches between Iin and Din

are computed for each class C′

k independently generating the
pixel sets

C′

k = {(x, y) ∈ Ck) : ED(x, y) > 0} (2)

which comprises points in depth layer k with edge strength
greater than 0. For each class C′

k, the algorithm computes the
displacement vectorv∗ = [v∗x, v

∗

y ] in the search windowWSR

such that

v
∗ = arg max

v∈WSR

∑
(x,y)∈C′

k

EL(x� vx, y � vy). (3)

where the operator � equals + or − depending on whether
the coordinate x (or y) is higher or not with respect to the cor-
responding coordinate of the principal point R = (Rx, Ry).
In this way, the algorithm compensate the mismatch between
edges of the color component and of the depth information
(see Figure 3). Despite object profiles result irregular in the
depth component, the algorithm assumes that errors vary
symmetrically with respect to borders and maximizing edge
matching permits a correct alignment.

3.3. Correcting depth values

The correction of the depth values obtained by the IR struc-
tured light camera can be obtained differentiating the equa-
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Fig. 3. Example of computation of v∗ for the class C′

k (detail
from the scene bearbins).

tions of the pinhole camera model

⎡
⎣ x

y
1

⎤
⎦ =

⎡
⎣ fx 0 0 C′

x

0 fy 0 C′

y

0 0 1 C′

z

⎤
⎦

⎡
⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎦ (4)

and combining it with the function that maps valuesDin(x, y)
into distance values z′ = 100/(3.33 − 0.00307 Din(x, y)).
In our implementation, the algorithm corrects the positions
of pixels in Ck and replaces the associated depth values
Din(x, y) with the value

D′(x� v∗x, y � v∗y) = Din(x, y) +
δxD(x, y) + δyD(x, y)

2
(5)

where

δxD(x, y) =
�v∗x · (1084 +Din(x, y))

(x −Rx)

δyD(x, y) =
�v∗y · (1084 +Din(x, y))

(y −Ry)
.

(6)

At this point, the resulting depth mapD′ has to be extended in
order to fill holes and gaps that lie wherever the depth values
estimated by the sensor are not sufficiently reliable.

3.4. Segmentation

Like other algorithms for depth processing [5], our approach
resorts to segmentation in order to partition the input depth
map into segments where depth signal is assumed to be planar.
As a matter of fact, it is necessary to oversegment the input
images in order to avoid segments that include sharp edges
or different objects inside themselves. In our approach we
adopted the segmentation strategy in [6], which builds a grid
of nodes associated to each pixel of the image. The weights
of the edges equals the Euclidean distance including color and
depth components (when depth is available).

The result of the algorithm is a map M of pixel regions
Mk associated to each segment. The included depth values
will be interpolated according to a planar model in order to
fill all the holes. Before this operation, a further processing
step is required.

3.5. Merging segments

In order to interpolate depth information, empty segments
(i.e., not including a sufficient number of samples from D′)

need to be merged to one of the neighboring non-empty seg-
ments minimizing the MSE of the difference between the av-
erage color component of the two segments. The resulting
segmentation map will be referenced as M′.

3.6. Interpolating depth values

After refining the segmentation map, the valid depth values
within segment M ′

k can be interpolated in order to fill the
missing values within the same segment. This operation re-
lies on the assumption that the depth signal is approximately
smooth within each segment M ′

k. However, the borders of
objects in the depth image are highly noisy and irregular, and
therefore, some of the depth pixels could lie on a different
segmentM ′

k.
The interpolation strategy has to select the pixel values

concerning the object covered by M ′

k and discard the extra-
neous ones. For each M ′

k in M′, the algorithm computes the
variance of depth pixels and compares the resulting value with
the threshold Tσ.

In case the variance is higher, it is possible that extraneous
depth pixels are included inMk and they have to be removed.
To this purpose, k-means algorithm is run on depth pixels of
M ′

k partitioning the values D′(x, y) into 3 classes. The algo-
rithmwill consider for the interpolation only those depth pixel
within the most frequently chosen cluster. In case variance is
lower, all the depth pixel inM ′

k are used to fill holes.
After discriminating pixels to be interpolated, a polyno-

mial regression is run on pertinent depth pixels, and the result-
ing coefficients are used to compute the missing pixel values.
The resulting depth map will be namedDout.

4. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed algo-
rithm, we built a stereo system consisting of an MS Kinect
sensor and a side standard webcam that acquires images with
resolution 320 × 240. Different 3D scenarios have been ac-
quired under different light conditions. For each scene we
performed 10 independent acquisitions in order to obtain dif-
ferent realizations for the noise signal on depth maps. The
performance of the algorithm has been evaluated computing
the average number of valid pixels in the final depth maps
and the average PSNR obtained warping the pixels of Kinect
color camera on the view corresponding to the side webcam.
All the experimental data are available at [7].

Figure 4(a) shows the average PSNR values of the warped
views for the original depthmapDin, the corrected depthmap
D′, and the final depth map Dout, while Figure 4(b) reports
the percentage of valid pixels for the different depth maps.
The displayed results report also the performance of the in-
terpolation strategy applied directly to the input depth map
Din (in this case the final depth map is referenced as D′

out).
It is possible to notice that the interpolation strategy permits
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Fig. 4. Experimental results for duck, duckwater, bearball related to different depth maps.
a) Average PSNR of the warped view, b) percentage of valid depth pixels, c) Average PSNR obtained warping a common set of
pixels.

Table 1. Experimental results for different scenes.

Scene Ambient Light
E[ΔPSNR]

(dB)
pix.

incr. (%)
coffee indoor natural/reflections +0.28 61.85

director indoor natural + neon +0.45 51.04
entering outdoor natural/indirect +0.02 67.70
parking outdoor natural/direct +0.20 418.74
peter indoor natural + neon +0.61 66.28
soda indoor natural/reflections +0.70 78.36

filling most of the holes in the final depth map improving
the quality of the depth values and reducing the amount of
noise. The average PSNR for the warped view of the scene
bearball is 3.7 dB higher using the depth map Dout with
respect to Din. No significant difference can be noticed for
the scene duckwater since depth image is degraded by a
strong amount of noise and the presence of transparent ob-
jects; as a matter of fact, no significant quality increment is
possible. Note also that the interpolation strategy permits fill-
ing the holes within the image (from Fig. 4(b) it is possible to
notice that the percentage of valid pixels is higher than 91 %
for all the scenes). It is also possible to notice that the depth
correction strategy proves to be effective for noisy sequences
like bearball, where Dout permits improving the average
PSNR of 1.7 dB with respect to D′

out. In the first case, cor-
rected depth values are interpolated, while noisy depth values
are employed forD′

out. This evidence can be noticed from the
results in Figure 4(c), where the side view is obtained warp-
ing a common subset of depth pixels valid for all the maps. It
is possible to notice thatDout permits obtaining significantly-
higher PSNR values with respect to the other solutions.

In our experimental tests we evaluated the performance
under diverse and uncontrolled light conditions. Table 1 re-
ports the average PSNR increment E[ΔPSNR] and the aver-
age relative increment of the percentage of valid pixels ob-
tained by Dout with respect to Din. The quality increment is
lower since uncontrolled light introduces a stronger amount of
noise on the acquired depth. However, the approach improves
the quality of the final 3D model both in terms of quality and
resolution (a visual evidence for the performance of the algo-
rithm can be found at [7]).

5. CONCLUSION

The paper presents a joint denoising and interpolation ap-
proach for the MS Kinect sensor. The algorithm is based on
an initial correction of depth values in the sequence, which
then will be interpolated in order to fill holes and missing
depth values. The proposed solution permits obtaining signif-
icant improvements for 3D models acquired under both con-
trolled and uncontrolled light conditions.
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