
ORIENTED RADIAL DISTRIBUTION ON DEPTH DATA:
APPLICATION TO THE DETECTION OF END-EFFECTORS

Xavier Suau Javier Ruiz-Hidalgo Josep R. Casas

Universitat Politècnica de Catalunya
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ABSTRACT

End-effectors are considered to be the main topological extremities
of a given 3D body. Even if the nature of such body is not restricted,
this paper focuses on the human body case. Detection of human
extremities is a key issue in the human motion capture domain, be-
ing needed to initialize and update the tracker. Therefore, the effec-
tiveness of human motion capture systems usually depends on the
reliability of the obtained end-effectors. The increasing accuracy,
low cost and easy installation of depth cameras has opened the door
to new strategies to overcome the body pose estimation problem.
With the objective of detecting the head, hands and feet of a human
body, we propose a new local feature computed from depth data,
which gives an idea of its curvature and prominence. Such feature is
weighted depending on recent detections, providing also a temporal
dimension. Based on this feature, some end-effector candidate blobs
are obtained and classified into head, hands and feet according to
three probabilistic descriptors.

Index Terms— Motion capture, Motion analysis, Machine vi-
sion, Classification, Human computer interaction

1. INTRODUCTION

Depth cameras have raised from marginal research sensors to be a
true alternative to multiview strategies in the field of human motion
capture. These new cameras, which work in a range between 0.5 to
6 meters, provide a very fast and handy way of obtaining 3D infor-
mation from a scene. More precisely, depth cameras provide a pixel-
wise depth estimation of the recorded scene. The resulting data may
be considered as a 3D sampling of the visible scene surface from the
camera viewpoint. Since the acquired data is restricted to a single
viewpoint, it is called 2.5D data throughout this paper.

The increasing performance of depth sensors has forested hu-
man pose estimation from 2.5D data. Knoop et. al [1] propose a
fitting of the 2.5D data with a 3D model by means of ICP (Iterative
Closest Point). Grest et. al [2] use a non-linear least squares esti-
mation based on silhouette edges, which is able to track extremities
in adverse background conditions. Zhu et. al [3] propose a tracking
algorithm which exploits temporal consistency over frames to esti-
mate the pose of a constrained human model. Whilst the above three
methods focus on upper-body pose, Plagemann et. al [4] present a
fast method which localizes body end-effectors on 2.5D data at about
15 frames per second. Ganapathi et. al [5] extend the work in [4] and

The research leading to these results has received funding from the Euro-
pean Union’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement no248138.

This work has been partially supported by the Spanish Ministerio de
Ciencia e Innovación, under project TEC2010-18094

Fig. 1. Example of the proposed end-effector detection on three
challenging situations. Pixels with dark values have a high Oriented
Radial Distribution value, while light pixels resulted in low values.
The obtained end-effectors are highlighted and labeled as head (red),
hand (green) and foot (blue).

extract full body pose by filtering the 2.5D data, using the body parts
locations. Shotton et. al [6] presented recently the pose recognition
algorithm running in the Microsoft Kinect depth sensor, which takes
advantage of a large and varied dataset to carry out a pixel-wise clas-
sification into different body parts.

In this paper we propose a novel strategy to extract human
end-effectors from 2.5D data (Figure 1). The method relies on a
new feature, called Oriented Radial Distribution (ORD) of a pixel’s
neighborhood. Such feature presents high values on prominent
zones of the scene surface, and low values on flat and interior zones.
Therefore, it is opportune to use this feature to detect end-effectors
on depth data. The most prominent end-effectors are classified
into head, hand and foot according to some probabilistic descrip-
tors which categorize their position, size and shape. The obtained
end-effectors are used to reinforce the detection in further frames,
providing a temporal dimension which increases the robustness of
the algorithm.

The remaining of this paper is organized as follows. In Section
2 the oriented radial distribution feature is introduced. The classifi-
cation step is described in Section 3, where the used descriptors are
defined. Experimental results on accuracy and processing time are
shown in Section 4. Finally, a concluding discussion and the direc-
tion of our future work are presented in Section 5.

2. ORIENTED RADIAL DISTRIBUTION

A 3D point cloud is obtained after mapping the depth pixels in the
real world coordinate system. Such point cloud corresponds to a
sampling of the visible scene surface from the camera viewpoint.
With a simple foreground segmentation, using a depth threshold with
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Fig. 2. Oriented Radial Distribution feature computation example.
The point a belongs to an extreme, the distances between the dark
crosses δ̄j and the baricenter of each zone 1√

2
ρ present high values.

On the other hand, point b belongs to a relatively uniform area, and
most of the |δ̄j − 1√

2
ρ| distance values are very low.

respect to the empty scene (background), the subset Ω containing the
foreground objects is obtained (human body, in this paper).

After simple inspection of Ω (Figure 2), one may notice that the
head, hands and feet are relatively visible on the depth map. Indeed,
these five end-effectors share the common characteristics of being
extrema of Ω, and also of having a similar size. Therefore, being
able to determine whether a pixel is located in an extremal zone of a
given size is convenient to detect the end-effectors of a human body.

With this purpose, we propose a feature Θ : {p,Ω, ξ} �−→ R to
measure the Oriented Radial Distribution of the neighborhood N ρ

p

around a point p ∈ Ω (an example is provided in Figure 2). More
precisely, let the neighborhood N ρ

p of p be all those points {pi} ∈ Ω
such that |p − pi| < ρ. In other words, N ρ

p contains all the points
located in a ball of radius ρ centered at p. Therefore, the radius ρ is a
parameter of the proposed feature. Such radius, and other parameters
explained in this section, are noted as ξ.

The tangential plane Tp at p is roughly estimated by Princi-
pal Component Analysis (PCA) of the points surrounding p, the
two principal axis of the PCA determining Tp. Then, all the points
pi ∈ N ρ

p are projected onto Tp. Therefore, a disk Dρ
p of radius ρ is

obtained, containing all the projections of the points in the neighbor-
hood of p. Projecting the neighborhood of every point in Ω onto its
tangent plane is a key aspect of the proposed algorithm (Figure 3),
making the feature Θ consistent over the whole point cloud Ω.

If the central point p is not located close to an extreme, it is likely
to be surrounded by a regular amount of points in all directions. On
the other hand, points located close to extremal zones only present
neighbors in some directions. In order to measure whether point p
is located close to an extremal zone of Ω or not, the content of Dρ

p

is analyzed. Indeed, Dρ
p is divided into K equal zones as shown in

Figure 2 (K = 16 in the example), where K ∈ ξ is a parameter.
These zones, noted Δj with j = 1..K, present two equal sides of
length ρ and a third side of length 2πρ

K
. The average distance δ̄j

between the points in each zone Δj and the central point p is cal-
culated, as shown in Figure 2. Therefore, a δ̄j value characterizes
every zone Δj . Different situations may happen:

• Those Δj zones being completely filled with points will have
a δ̄j value very close to 1√

2
ρ, which is the radius of baricenter

Fig. 3. Orientation of the measure disks Dρ
p depending on the tan-

gent plane to the depth surface at the measuring point (center of the
disk). Two disks are illustrated in this example, and the resulting Θ
feature on the right.

of the zone (divides the zones into two equal areas).

• On the contrary, partially filled zones will result in a higher
distance between δ̄j and 1√

2
ρ.

The ORD feature Θ is constructed as the average distance
between the δ̄j and 1√

2
ρ, as shown in Equation (1). The obtained

result is normalized with the maximal value 1√
2
ρ, so that Θ ∈ [0, 1].

Only those zones Δj filled with more than 10 points are considered,
resulting in a subset of Kf zones taken into account to compute Θ.

Θ(p,Ω, ξ) =
1

1√
2
ρKf

Kf∑

j=0

|δ̄j − 1√
2
ρ| with ξ = {ρ,K} (1)

2.1. Effect of the parameterization ξ

Two main parameters are involved in the computation of Θ, noted
as ξ = {ρ,K}. The radius ρ determines the size of the neigh-
borhood around p which will be analyzed. Indeed, the feature Θ,
parameterized with a given ρ, will return its greatest values at the
extrema presenting a radius similar to ρ. Thus, small radius return
high values at thin extrema of Ω, while larger radius detect larger
extrema. Therefore, the radius value may be used to filter some ex-
trema while preserving others. For example, to find a human head,
a radius of about ρ = 15 cm should be appropriate, which will filter
other noisy and smaller extrema.

The second parameter in the calculation of Θ is the number of
zones K into which the oriented disk Dρ

p is divided. Low values of
K (i.e. K=2) lead to noisy and non-robust detection of end-effectors,
the spatial resolution of the Θ feature being too poor. On the other
hand, high values of K (i.e. K=128) provide a too smooth transition
between end-effectors and the non-desired zones. Reasonable trade-
off values is between 8 and 16 divisions.

3. CLASSIFICATION OF END-EFFECTORS USING
PROBABILISTIC DESCRIPTORS

A set of candidate end-effectors is obtained after the calculation of
Θ on Ω. As shown in Figure 4, those points p over a threshold Θmin

(usually Θmin ≈ 0.15) are labeled as candidate points. We look for
those five zones with maximal Θ being large enough to be consid-
ered end-effectors. Therefore, all the very small blobs observed in
Figure 4 (third column) are omitted, only keeping the largest ones,
up to five candidate blobs. Remark that sometimes less than five
blobs are obtained (i.e. in the case of a hidden hand).

Three descriptors are calculated for these candidate blobs, in or-
der to classify them into γi = {head, hand, foot}, as in [4]. These
descriptors, for a given blob B with centroid Bc, are:
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Fig. 4. Summary of the proposed method. From left to right: Seg-
mented depth map Ω, Oriented Radial Distribution values Θ, candi-
date points Θ > Θmin and labeled end-effectors.

Y - Position The relative height (vertical y axis) with respect to the
centroid Ωc of Ω is calculated as: Y = (Bc

y −Ωc
y) cm (verti-

cal coordinates of Bc and Ωc).

S - Size The estimated size of B, calculated from the apparent area
of B on the depth image. A quadratic law Γ relating this
apparent area and the physical one is obtained empirically
for the Kinect sensor. More precisely, the conversion from a
single pixel at depth z to a real world surface is Γpix(z) ≈
1.12 · 10−6 · z2 + 8.41 · 10−5 · z − 4.64 · 10−3. Therefore,
the size descriptor of a blob B containing NB points is: S =
(NB · Γ(Bc

z)) cm
2.

A - Shape The shape descriptor is defined as the relation between
the second α2 and first α1 eigenvalues of the PCA decom-
position of B. Thus, A = α2

α1
, which gives an idea of the

roundness of B. Very elliptical shapes result in low A values,
while very round B shapes result in A values near to 1.

These descriptors λk = {Y, S,A} are analyzed over 1300
frames containing various human poses with annotated head, hand
and foot parts. The statistical moments (mean μ and variance
σ2) of the obtained blobs are calculated for every extremity group
γi = {head, hand, foot} and for every descriptor (Table 1).

We propose to construct the probability density functions (PDF
or f ) which evaluate the probability of a given descriptor to belong
to a given extremity group. Such PDF are considered gaussian, cen-
tered at μγi

λk
with a standard deviation σγi

λk
, as shown in Equation (2).

Therefore, for each candidate blob B we may calculate the probabil-
ity of belonging to a given group γi depending on the three descrip-
tors. The combined probability of a blob belonging to a group γi is
defined as the product of the separate probabilities of every descrip-
tor of B belonging to γi (Equation (2)).

P (B = γi) = P
(
(YB = γi) ∧ (SB = γi) ∧ (AB = γi)

)

= f
γi
Y (B) · fγi

S (B) · fγi
A (B)

with PDF: f
γi
λk

(B) = 1

σ
γi
λk

√
2π

e
− 1

2

(
λk(B)−μ

γi
λk

σ
γi
λk

)2
(2)

A decision about whether a blob belongs to any of the γi groups is
taken, based on the obtained probabilities. Those candidate blobs
with a probability of belonging to any of the groups γi smaller than
P (B = γi) < 10−6 are not considered. The remaining candidate
blobs are classified into {head, hand, foot} depending on their
probabilities, restricted to two feet, two hands and one head (Figure
4, farther right).

λk μhead
λk

σhead
λk

μhand
λk

σhand
λk

μfoot
λk

σfoot
λk

Y 62.18 7.48 29.43 29.06 −71.31 10.89
S 58.58 10.00 64.24 24.89 46.68 10.75
A 0.58 0.17 0.11 0.13 0.41 0.19

Table 1. Statistical moments of the descriptors

Temporal weighting of the Oriented Radial Distribution feature

The objective of this operation is to increase the robustness and con-
sistence of the detection of end-effectors over time. The Θ values at
time t+1 are weighted according to the location of the end-effectors
at time t. The set of end-effectors locations is noted L. More pre-
cisely, a distance factor τ ∈ [0, 0.25] is added to every Θ(p,Ω, ξ)
value, where τ decreases exponentially with the distance between
the point p and L, as shown in Equation (3).

Θ̃t+1(p,Ω, ξ) = Θt+1(p,Ω, ξ) + τt | τt =
1

4
e−

|p−L|
10 (3)

4. EXPERIMENTAL RESULTS

Experiments are obtained with the Microsoft Kinect sensor, and
executed on an Intel Xeon CPU@3GHz. Color information is dis-
carded, only using depth images. Different resolutions are tested:
The Kinect original resolution of 640× 480 px, and also the down-
sampled version by a factor N = 4 (160× 120 px respectively).

A frame-rate of 9 fps is achieved with the N = 4 solution,
which is considered real-time. As expected, the full resolution ver-
sion executes much slower, at about 0.05 fps.

The results presented hereafter correspond to the real-time ver-
sion (N = 4) with a parameterization ξ = {ρ,K} = {15 cm, 8}.

About 800 frames have been manually marked, obtaining a
ground-truth sequence with head, hands and feet properly located.
Such sequence contains challenging poses, as well as some frames
with partial body capture (person slightly out of frame). A compila-
tion with some poses may be consulted in Figures 1 and 5.

An end-effector is considered properly detected when the dis-
tance to the ground-truth is smaller than 30 cm, as proposed in [5].

The obtained head detection rate is of 97.7%, with an average
error of 2.7 cm. As far as hands are concerned, none, one or two
hands may appear marked in the ground-truth sequence. No dis-
tinction is considered between right and left hand, but between first
(or only) hand and second hand (detection order). The first hand is
detected in 90.31% of the cases, with an average error of 8.15 cm;
while the second hand detection rate is of 76.31% with an average
error of 9.2 cm. If an end-effector is detected as hand, and does not
exist as ground-truth, a false positive is counted. About 8% of the
overall hand detections are false positives in our experiments.

The detection rate of the first foot is of 86% with an average
error of 11.2 cm. The second foot is detected in 71.6% of the cases,
with an average error of 13.1 cm. The number of false positives is
about 8.2% of de detections.

A confusion matrix is presented in Figure 6, built after the de-
tected end-effectors, to give an overview of the precision of the clas-
sification. The values in brackets correspond to the full resolution
version. Feet are the best-classified end-effectors, with only 1.07%
of the detections being labeled as hands. The head is also well de-
tected, being confused with hands about 1.12% of the times. Cross-
confusion between feet and head are not observed in our experi-
ments. Hands are more often confused, even if achieving a high
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Fig. 5. Compilation of different poses in the experiment sequence. The proposed algorithm performs properly such challenging situations.
Poses partially out of frame (farther left and right) are overcome. Remark that extremities are not detected when they are not prominent
enough or when they are occluded (from left to right: 2nd, 7th and 8th poses).

head hand foot 
head 98.9% (95.8%) 1.12% (4.20%) 0% (0%) 
hand 3.2% (5.1%) 96.3% (93.3%) 0.52% (1.61%) 
foot 0% 1.07% (0%) 98.9% (100%) 

Fig. 6. Classification confusion matrix for the real-time version, and
the full resolution version (in brackets).

classification percentage of 96.3%, they are confused with the head
(3.2%) and less often with feet (0.52%).

Slightly worse percentages are obtained with the full resolution
version, due to the use of the N = 4 statistical moments in the
experiment. However, the confusion matrix is still acceptable in both
cases. The average errors of the full resolution version are 2.58 cm
(head), 4.13 cm (first hand), 4.53 cm (second hand), 5.81 cm (first
foot), 6.90 cm (second foot). Therefore, the main advantage of the
full resolution is a better average precision, which is about twice
better for hands and feet.

The proposed method compares to the work in [4] and [5], since
their image resolution (SR4000 TOF camera, 176×144 px) and ob-
jective (detection of human end-effectors) are similar as ours. In [5],
a tracking error between 10−20 cm is achieved when extremities are
visible. Our proposal obtains a detection error of about 10 cm, with
an insignificant error on head detection. While in [5] a model-based
approach is proposed (which delivers a human pose every frame) our
proposal only delivers robust end-effector locations when they are
visible. However, our proposal executes at 9 fps on a regular CPU
core, while the proposal in [5] achieves a frame-rate of 4−6 fps us-
ing a specific GPU implementation. Given the differences of speed
of both technologies (GPU implementations are considerably faster),
the strategy proposed in this paper performs much faster.

In [4], head, hands and feet are classified without confusion
about 98%, 82% and 79% of the times, respectively. These per-
centages are very similar to the ones obtained in this paper, except
for the feet, that are much better classified in our proposal (98.9%).

5. CONCLUSION

A novel feature on depth data has been proposed in this paper, which
is used to locate candidate blobs to end-effectors. A fast classifica-

tion strategy which exploits the statistics of local and global descrip-
tors of these blobs is also proposed.

Experimental results show that the proposed method performs
slightly better in terms of classification than a recent reference
method. Furthermore, similar average accuracy errors are obtained
with a lower computational time. Such difference in computational
load is emphasized, considering that the reference method in [5] is
implemented on a GPU, while our proposal runs on a standard CPU.

We consider adding other descriptors to enhance the classifica-
tion accuracy in the future. As well, temporal consistence is to be
increased with a body model, which should be updated with a smart
combination of the obtained end-effector locations with other inde-
pendent features from the literature.
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